Cargando…
Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6
In times of societal development, sustainability has become a major concern for many manufacturers in the metal industries. In this context, surface texturing of cutting tools offers a promising approach in terms of reducing energy consumption and material waste. In this work, direct laser interfere...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921853/ https://www.ncbi.nlm.nih.gov/pubmed/36770212 http://dx.doi.org/10.3390/ma16031205 |
_version_ | 1784887411429343232 |
---|---|
author | Baumann, Robert Bouraoui, Yasmine Teicher, Uwe Selbmann, Erik Ihlenfeldt, Steffen Lasagni, Andrés Fabián |
author_facet | Baumann, Robert Bouraoui, Yasmine Teicher, Uwe Selbmann, Erik Ihlenfeldt, Steffen Lasagni, Andrés Fabián |
author_sort | Baumann, Robert |
collection | PubMed |
description | In times of societal development, sustainability has become a major concern for many manufacturers in the metal industries. In this context, surface texturing of cutting tools offers a promising approach in terms of reducing energy consumption and material waste. In this work, direct laser interference patterning is utilized for producing periodic line-like structures with spatial periods of 2.0 µm and 5.5 µm on rake-flank faces of cemented tungsten carbide cutting inserts. Structure depths up to 1.75 µm are reached by controlling the applied number of laser pulses. Turning experiments under lubricated conditions carried out on Al 6061 T6 parts with textured and untreated tools are performed to determine their tribological performances. The used textured cutting tools can effectively decrease machining forces up to 17% due to the corresponding improvement in frictional behavior at the tool/chip interface. Furthermore, the laser-processed tools produce thinner chips and decrease the surface roughness by 31% of the aluminum work piece. |
format | Online Article Text |
id | pubmed-9921853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99218532023-02-12 Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 Baumann, Robert Bouraoui, Yasmine Teicher, Uwe Selbmann, Erik Ihlenfeldt, Steffen Lasagni, Andrés Fabián Materials (Basel) Article In times of societal development, sustainability has become a major concern for many manufacturers in the metal industries. In this context, surface texturing of cutting tools offers a promising approach in terms of reducing energy consumption and material waste. In this work, direct laser interference patterning is utilized for producing periodic line-like structures with spatial periods of 2.0 µm and 5.5 µm on rake-flank faces of cemented tungsten carbide cutting inserts. Structure depths up to 1.75 µm are reached by controlling the applied number of laser pulses. Turning experiments under lubricated conditions carried out on Al 6061 T6 parts with textured and untreated tools are performed to determine their tribological performances. The used textured cutting tools can effectively decrease machining forces up to 17% due to the corresponding improvement in frictional behavior at the tool/chip interface. Furthermore, the laser-processed tools produce thinner chips and decrease the surface roughness by 31% of the aluminum work piece. MDPI 2023-01-31 /pmc/articles/PMC9921853/ /pubmed/36770212 http://dx.doi.org/10.3390/ma16031205 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baumann, Robert Bouraoui, Yasmine Teicher, Uwe Selbmann, Erik Ihlenfeldt, Steffen Lasagni, Andrés Fabián Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 |
title | Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 |
title_full | Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 |
title_fullStr | Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 |
title_full_unstemmed | Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 |
title_short | Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6 |
title_sort | tailored laser structuring of tungsten carbide cutting tools for improving their tribological performance in turning aluminum alloy al6061 t6 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921853/ https://www.ncbi.nlm.nih.gov/pubmed/36770212 http://dx.doi.org/10.3390/ma16031205 |
work_keys_str_mv | AT baumannrobert tailoredlaserstructuringoftungstencarbidecuttingtoolsforimprovingtheirtribologicalperformanceinturningaluminumalloyal6061t6 AT bouraouiyasmine tailoredlaserstructuringoftungstencarbidecuttingtoolsforimprovingtheirtribologicalperformanceinturningaluminumalloyal6061t6 AT teicheruwe tailoredlaserstructuringoftungstencarbidecuttingtoolsforimprovingtheirtribologicalperformanceinturningaluminumalloyal6061t6 AT selbmannerik tailoredlaserstructuringoftungstencarbidecuttingtoolsforimprovingtheirtribologicalperformanceinturningaluminumalloyal6061t6 AT ihlenfeldtsteffen tailoredlaserstructuringoftungstencarbidecuttingtoolsforimprovingtheirtribologicalperformanceinturningaluminumalloyal6061t6 AT lasagniandresfabian tailoredlaserstructuringoftungstencarbidecuttingtoolsforimprovingtheirtribologicalperformanceinturningaluminumalloyal6061t6 |