Cargando…
A Soft Sensor to Estimate the Opening of Greenhouse Vents Based on an LSTM-RNN Neural Network
In greenhouses, sensors are needed to measure the variables of interest. They help farmers and allow automatic controllers to determine control actions to regulate the environmental conditions that favor crop growth. This paper focuses on the problem of the lack of monitoring and control systems in...
Autores principales: | Guesbaya, Mounir, García-Mañas, Francisco, Rodríguez, Francisco, Megherbi, Hassina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921858/ https://www.ncbi.nlm.nih.gov/pubmed/36772289 http://dx.doi.org/10.3390/s23031250 |
Ejemplares similares
-
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
por: Curreri, Francesco, et al.
Publicado: (2021) -
Groundwater quality prediction based on LSTM RNN: An Iranian experience
por: Valadkhan, D., et al.
Publicado: (2022) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
Splice-site identification for exon prediction using bidirectional LSTM-RNN approach
por: Singh, Noopur, et al.
Publicado: (2022) -
Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN
por: Gong, Liyun, et al.
Publicado: (2021)