Cargando…
An Adaptive Kernels Layer for Deep Neural Networks Based on Spectral Analysis for Image Applications
As the pixel resolution of imaging equipment has grown larger, the images’ sizes and the number of pixels used to represent objects in images have increased accordingly, exposing an issue when dealing with larger images using the traditional deep learning models and methods, as they typically employ...
Autores principales: | Al Shoura, Tariq, Leung, Henry, Balaji, Bhashyam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921880/ https://www.ncbi.nlm.nih.gov/pubmed/36772565 http://dx.doi.org/10.3390/s23031527 |
Ejemplares similares
-
Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
por: Canatar, Abdulkadir, et al.
Publicado: (2021) -
An introduction to Laplacian spectral distances and kernels: theory, computation, and applications
por: Patanè, Giuseppe, et al.
Publicado: (2017) -
Counting manatee aggregations using deep neural networks and Anisotropic Gaussian Kernel
por: Wang, Zhiqiang, et al.
Publicado: (2023) -
Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting
por: Khaki, Saeed, et al.
Publicado: (2020) -
Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based Entropy
por: Wickstrøm, Kristoffer K., et al.
Publicado: (2023)