Cargando…
Design of Refractory Alloys for Desired Thermal Conductivity via AI-Assisted In-Silico Microstructure Realization
A computational methodology based on supervised machine learning (ML) is described for characterizing and designing anisotropic refractory composite alloys with desired thermal conductivities (TCs). The structural design variables are parameters of our fast computational microstructure generator, wh...
Autores principales: | Seyed Mahmoud, Seyed Mohammad Ali, Faraji, Ghader, Baghani, Mostafa, Hashemi, Mohammad Saber, Sheidaei, Azadeh, Baniassadi, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921970/ https://www.ncbi.nlm.nih.gov/pubmed/36770095 http://dx.doi.org/10.3390/ma16031088 |
Ejemplares similares
-
Tablet Geometry Effect on the Drug Release Profile from a Hydrogel-Based Drug Delivery System
por: Mohseni-Motlagh, Seyed-Farid, et al.
Publicado: (2023) -
Application of the Quality by Design Concept (QbD) in the Development of Hydrogel-Based Drug Delivery Systems
por: Mohseni-Motlagh, S. Farid, et al.
Publicado: (2023) -
Silk Fibroin Hydrogel Reinforced With Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release
por: Haghighattalab, Mahsa, et al.
Publicado: (2022) -
A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures
por: Rahmatabadi, Davood, et al.
Publicado: (2022) -
A unifying force for the realization of medical AI
por: Lennerz, Jochen K., et al.
Publicado: (2022)