Cargando…
T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles
Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically “cold” tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumor...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922247/ https://www.ncbi.nlm.nih.gov/pubmed/36774352 http://dx.doi.org/10.1038/s41467-023-36321-6 |
_version_ | 1784887502468808704 |
---|---|
author | Turco, Verena Pfleiderer, Kira Hunger, Jessica Horvat, Natalie K. Karimian-Jazi, Kianush Schregel, Katharina Fischer, Manuel Brugnara, Gianluca Jähne, Kristine Sturm, Volker Streibel, Yannik Nguyen, Duy Altamura, Sandro Agardy, Dennis A. Soni, Shreya S. Alsasa, Abdulrahman Bunse, Theresa Schlesner, Matthias Muckenthaler, Martina U. Weissleder, Ralph Wick, Wolfgang Heiland, Sabine Vollmuth, Philipp Bendszus, Martin Rodell, Christopher B. Breckwoldt, Michael O. Platten, Michael |
author_facet | Turco, Verena Pfleiderer, Kira Hunger, Jessica Horvat, Natalie K. Karimian-Jazi, Kianush Schregel, Katharina Fischer, Manuel Brugnara, Gianluca Jähne, Kristine Sturm, Volker Streibel, Yannik Nguyen, Duy Altamura, Sandro Agardy, Dennis A. Soni, Shreya S. Alsasa, Abdulrahman Bunse, Theresa Schlesner, Matthias Muckenthaler, Martina U. Weissleder, Ralph Wick, Wolfgang Heiland, Sabine Vollmuth, Philipp Bendszus, Martin Rodell, Christopher B. Breckwoldt, Michael O. Platten, Michael |
author_sort | Turco, Verena |
collection | PubMed |
description | Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically “cold” tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a β-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity. |
format | Online Article Text |
id | pubmed-9922247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99222472023-02-13 T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles Turco, Verena Pfleiderer, Kira Hunger, Jessica Horvat, Natalie K. Karimian-Jazi, Kianush Schregel, Katharina Fischer, Manuel Brugnara, Gianluca Jähne, Kristine Sturm, Volker Streibel, Yannik Nguyen, Duy Altamura, Sandro Agardy, Dennis A. Soni, Shreya S. Alsasa, Abdulrahman Bunse, Theresa Schlesner, Matthias Muckenthaler, Martina U. Weissleder, Ralph Wick, Wolfgang Heiland, Sabine Vollmuth, Philipp Bendszus, Martin Rodell, Christopher B. Breckwoldt, Michael O. Platten, Michael Nat Commun Article Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically “cold” tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a β-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity. Nature Publishing Group UK 2023-02-11 /pmc/articles/PMC9922247/ /pubmed/36774352 http://dx.doi.org/10.1038/s41467-023-36321-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Turco, Verena Pfleiderer, Kira Hunger, Jessica Horvat, Natalie K. Karimian-Jazi, Kianush Schregel, Katharina Fischer, Manuel Brugnara, Gianluca Jähne, Kristine Sturm, Volker Streibel, Yannik Nguyen, Duy Altamura, Sandro Agardy, Dennis A. Soni, Shreya S. Alsasa, Abdulrahman Bunse, Theresa Schlesner, Matthias Muckenthaler, Martina U. Weissleder, Ralph Wick, Wolfgang Heiland, Sabine Vollmuth, Philipp Bendszus, Martin Rodell, Christopher B. Breckwoldt, Michael O. Platten, Michael T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles |
title | T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles |
title_full | T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles |
title_fullStr | T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles |
title_full_unstemmed | T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles |
title_short | T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles |
title_sort | t cell-independent eradication of experimental glioma by intravenous tlr7/8-agonist-loaded nanoparticles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922247/ https://www.ncbi.nlm.nih.gov/pubmed/36774352 http://dx.doi.org/10.1038/s41467-023-36321-6 |
work_keys_str_mv | AT turcoverena tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT pfleidererkira tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT hungerjessica tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT horvatnataliek tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT karimianjazikianush tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT schregelkatharina tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT fischermanuel tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT brugnaragianluca tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT jahnekristine tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT sturmvolker tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT streibelyannik tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT nguyenduy tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT altamurasandro tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT agardydennisa tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT sonishreyas tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT alsasaabdulrahman tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT bunsetheresa tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT schlesnermatthias tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT muckenthalermartinau tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT weisslederralph tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT wickwolfgang tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT heilandsabine tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT vollmuthphilipp tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT bendszusmartin tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT rodellchristopherb tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT breckwoldtmichaelo tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles AT plattenmichael tcellindependenteradicationofexperimentalgliomabyintravenoustlr78agonistloadednanoparticles |