Cargando…
Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy
Paracrystalline state achieved in the diamond system guides a direction to explore the missing link between amorphous and crystalline states. However, such a state is still challenging to reach in alloy systems in a controlled manner. Here, based on the vast composition space and the complex atomic...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922268/ https://www.ncbi.nlm.nih.gov/pubmed/36774415 http://dx.doi.org/10.1038/s41467-023-36423-1 |
Sumario: | Paracrystalline state achieved in the diamond system guides a direction to explore the missing link between amorphous and crystalline states. However, such a state is still challenging to reach in alloy systems in a controlled manner. Here, based on the vast composition space and the complex atomic interactions in the high-entropy alloys (HEAs), we present an “atomic-level tailoring” strategy to create the paracrystalline HEA. The addition of atomic-level Pt with the large and negative mixing enthalpy induces the local atomic reshuffling around Pt atoms for the well-targeted local amorphization, which separates severe-distorted crystalline Zr-Nb-Hf-Ta-Mo HEA into the high-density crystalline MRO motifs on atomic-level. The paracrystalline HEA exhibits high hardness (16.6 GPa) and high yield strength (8.37 GPa) and deforms by nanoscale shear-banding and nanocrystallization modes. Such an enthalpy-guided strategy in HEAs can provide the atomic-level tailoring ability to purposefully regulate structural characteristics and desirable properties. |
---|