Cargando…
A deep learning approach reveals unexplored landscape of viral expression in cancer
About 15% of human cancer cases are attributed to viral infections. To date, virus expression in tumor tissues has been mostly studied by aligning tumor RNA sequencing reads to databases of known viruses. To allow identification of divergent viruses and rapid characterization of the tumor virome, we...
Autores principales: | Elbasir, Abdurrahman, Ye, Ying, Schäffer, Daniel E., Hao, Xue, Wickramasinghe, Jayamanna, Tsingas, Konstantinos, Lieberman, Paul M., Long, Qi, Morris, Quaid, Zhang, Rugang, Schäffer, Alejandro A., Auslander, Noam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922274/ https://www.ncbi.nlm.nih.gov/pubmed/36774364 http://dx.doi.org/10.1038/s41467-023-36336-z |
Ejemplares similares
-
Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes
por: Schäffer, Daniel E., et al.
Publicado: (2023) -
Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications
por: Patterson, Andrew, et al.
Publicado: (2023) -
Ferroptosis in viral infection: the unexplored possibility
por: Wang, Mao-peng, et al.
Publicado: (2021) -
Immune Checkpoint Inhibitors: The Unexplored Landscape of Geriatric Oncology
por: Choucair, Khalil, et al.
Publicado: (2022) -
Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
por: Berglund, Emelie, et al.
Publicado: (2018)