Cargando…
Photonic comb-rooted synthesis of ultra-stable terahertz frequencies
Stable terahertz sources are required to advance high-precision terahertz applications such as molecular spectroscopy, terahertz radars, and wireless communications. Here, we demonstrate a photonic scheme of terahertz synthesis devised to bring the well-established feat of optical frequency comb sta...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922295/ https://www.ncbi.nlm.nih.gov/pubmed/36774387 http://dx.doi.org/10.1038/s41467-023-36507-y |
Sumario: | Stable terahertz sources are required to advance high-precision terahertz applications such as molecular spectroscopy, terahertz radars, and wireless communications. Here, we demonstrate a photonic scheme of terahertz synthesis devised to bring the well-established feat of optical frequency comb stabilization down to the terahertz region. The source comb is stabilized to an ultra-low expansion optical cavity offering a frequency instability of 10(−15) at 1-s integration. By photomixing a pair of comb lines extracted coherently from the source comb, terahertz frequencies of 0.10–1.10 THz are generated with an extremely low level of phase noise of –70 dBc/Hz at 1-Hz offset. The frequency instability measured for 0.66 THz is 4.4 × 10(−15) at 1-s integration, which reduces to 5.1×10(−17) at 65-s integration. Such unprecedented performance is expected to drastically improve the signal-to-noise ratio of terahertz radars, the resolving power of terahertz molecular spectroscopy, and the transmission capacity of wireless communications. |
---|