Cargando…
Direct generation of protein conformational ensembles via machine learning
Dynamics and conformational sampling are essential for linking protein structure to biological function. While challenging to probe experimentally, computer simulations are widely used to describe protein dynamics, but at significant computational costs that continue to limit the systems that can be...
Autores principales: | Janson, Giacomo, Valdes-Garcia, Gilberto, Heo, Lim, Feig, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922302/ https://www.ncbi.nlm.nih.gov/pubmed/36774359 http://dx.doi.org/10.1038/s41467-023-36443-x |
Ejemplares similares
-
Machine Learning Generation of Dynamic Protein Conformational Ensembles
por: Zheng, Li-E, et al.
Publicado: (2023) -
Molecular Insights from Conformational Ensembles via Machine Learning
por: Fleetwood, Oliver, et al.
Publicado: (2020) -
Modeling of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Proteins by Machine Learning and Physics-Based Refinement
por: Heo, Lim, et al.
Publicado: (2020) -
Efficient conformational ensemble generation of protein-bound peptides
por: Yan, Yumeng, et al.
Publicado: (2017) -
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble
por: Audagnotto, Martina, et al.
Publicado: (2022)