Cargando…

Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis

Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS al...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Zhao, Luo, Ting, Dong, YiJie, Jia, XiaoHong, Deng, YinHui, Wu, GuoQing, Zhu, Ying, Zhang, JingWen, Liu, Juan, Yang, LiChun, Luo, XiaoMao, Li, ZhiYao, Xu, YanJun, Hu, Bin, Huang, YunXia, Chang, Cai, Xu, JinFeng, Luo, Hui, Dong, FaJin, Xia, XiaoNa, Wu, ChengRong, Hu, WenJia, Wu, Gang, Li, QiaoYing, Chen, Qin, Deng, WanYue, Jiang, QiongChao, Mou, YongLin, Yan, HuanNan, Xu, XiaoJing, Yan, HongJu, Zhou, Ping, Shao, Yang, Cui, LiGang, He, Ping, Qian, LinXue, Liu, JinPing, Shi, LiYing, Zhao, YaNan, Xu, YongYuan, Zhan, WeiWei, Wang, YuanYuan, Yu, JinHua, Zhou, JianQiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922312/
https://www.ncbi.nlm.nih.gov/pubmed/36774357
http://dx.doi.org/10.1038/s41467-023-36102-1
_version_ 1784887517729783808
author Yao, Zhao
Luo, Ting
Dong, YiJie
Jia, XiaoHong
Deng, YinHui
Wu, GuoQing
Zhu, Ying
Zhang, JingWen
Liu, Juan
Yang, LiChun
Luo, XiaoMao
Li, ZhiYao
Xu, YanJun
Hu, Bin
Huang, YunXia
Chang, Cai
Xu, JinFeng
Luo, Hui
Dong, FaJin
Xia, XiaoNa
Wu, ChengRong
Hu, WenJia
Wu, Gang
Li, QiaoYing
Chen, Qin
Deng, WanYue
Jiang, QiongChao
Mou, YongLin
Yan, HuanNan
Xu, XiaoJing
Yan, HongJu
Zhou, Ping
Shao, Yang
Cui, LiGang
He, Ping
Qian, LinXue
Liu, JinPing
Shi, LiYing
Zhao, YaNan
Xu, YongYuan
Zhan, WeiWei
Wang, YuanYuan
Yu, JinHua
Zhou, JianQiao
author_facet Yao, Zhao
Luo, Ting
Dong, YiJie
Jia, XiaoHong
Deng, YinHui
Wu, GuoQing
Zhu, Ying
Zhang, JingWen
Liu, Juan
Yang, LiChun
Luo, XiaoMao
Li, ZhiYao
Xu, YanJun
Hu, Bin
Huang, YunXia
Chang, Cai
Xu, JinFeng
Luo, Hui
Dong, FaJin
Xia, XiaoNa
Wu, ChengRong
Hu, WenJia
Wu, Gang
Li, QiaoYing
Chen, Qin
Deng, WanYue
Jiang, QiongChao
Mou, YongLin
Yan, HuanNan
Xu, XiaoJing
Yan, HongJu
Zhou, Ping
Shao, Yang
Cui, LiGang
He, Ping
Qian, LinXue
Liu, JinPing
Shi, LiYing
Zhao, YaNan
Xu, YongYuan
Zhan, WeiWei
Wang, YuanYuan
Yu, JinHua
Zhou, JianQiao
author_sort Yao, Zhao
collection PubMed
description Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.
format Online
Article
Text
id pubmed-9922312
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99223122023-02-13 Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis Yao, Zhao Luo, Ting Dong, YiJie Jia, XiaoHong Deng, YinHui Wu, GuoQing Zhu, Ying Zhang, JingWen Liu, Juan Yang, LiChun Luo, XiaoMao Li, ZhiYao Xu, YanJun Hu, Bin Huang, YunXia Chang, Cai Xu, JinFeng Luo, Hui Dong, FaJin Xia, XiaoNa Wu, ChengRong Hu, WenJia Wu, Gang Li, QiaoYing Chen, Qin Deng, WanYue Jiang, QiongChao Mou, YongLin Yan, HuanNan Xu, XiaoJing Yan, HongJu Zhou, Ping Shao, Yang Cui, LiGang He, Ping Qian, LinXue Liu, JinPing Shi, LiYing Zhao, YaNan Xu, YongYuan Zhan, WeiWei Wang, YuanYuan Yu, JinHua Zhou, JianQiao Nat Commun Article Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped. Nature Publishing Group UK 2023-02-11 /pmc/articles/PMC9922312/ /pubmed/36774357 http://dx.doi.org/10.1038/s41467-023-36102-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Yao, Zhao
Luo, Ting
Dong, YiJie
Jia, XiaoHong
Deng, YinHui
Wu, GuoQing
Zhu, Ying
Zhang, JingWen
Liu, Juan
Yang, LiChun
Luo, XiaoMao
Li, ZhiYao
Xu, YanJun
Hu, Bin
Huang, YunXia
Chang, Cai
Xu, JinFeng
Luo, Hui
Dong, FaJin
Xia, XiaoNa
Wu, ChengRong
Hu, WenJia
Wu, Gang
Li, QiaoYing
Chen, Qin
Deng, WanYue
Jiang, QiongChao
Mou, YongLin
Yan, HuanNan
Xu, XiaoJing
Yan, HongJu
Zhou, Ping
Shao, Yang
Cui, LiGang
He, Ping
Qian, LinXue
Liu, JinPing
Shi, LiYing
Zhao, YaNan
Xu, YongYuan
Zhan, WeiWei
Wang, YuanYuan
Yu, JinHua
Zhou, JianQiao
Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
title Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
title_full Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
title_fullStr Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
title_full_unstemmed Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
title_short Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
title_sort virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922312/
https://www.ncbi.nlm.nih.gov/pubmed/36774357
http://dx.doi.org/10.1038/s41467-023-36102-1
work_keys_str_mv AT yaozhao virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT luoting virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT dongyijie virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT jiaxiaohong virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT dengyinhui virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT wuguoqing virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT zhuying virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT zhangjingwen virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT liujuan virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT yanglichun virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT luoxiaomao virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT lizhiyao virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT xuyanjun virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT hubin virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT huangyunxia virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT changcai virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT xujinfeng virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT luohui virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT dongfajin virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT xiaxiaona virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT wuchengrong virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT huwenjia virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT wugang virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT liqiaoying virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT chenqin virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT dengwanyue virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT jiangqiongchao virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT mouyonglin virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT yanhuannan virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT xuxiaojing virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT yanhongju virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT zhouping virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT shaoyang virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT cuiligang virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT heping virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT qianlinxue virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT liujinping virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT shiliying virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT zhaoyanan virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT xuyongyuan virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT zhanweiwei virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT wangyuanyuan virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT yujinhua virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis
AT zhoujianqiao virtualelastographyultrasoundviagenerativeadversarialnetworkforbreastcancerdiagnosis