Cargando…

Comparison of carbon content between plantation and natural regeneration seedlings in Durango, Mexico

Forest plantations and natural forests perform a relevant role in capturing CO(2) and reducing greenhouse gas concentrations. The objective of this study was to compare the diameter increment, biomass and carbon accumulation in a plantation of Pinus durangensis and a naturally regenerated stand. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Soto-Cervantes, Jesús Alejandro, Corral-Rivas, José Javier, Domínguez-Calleros, Pedro Antonio, López-Serrano, Pablito Marcelo, Montiel-Antuna, Eusebio, García-Montiel, Emily, Pérez-Luna, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922496/
https://www.ncbi.nlm.nih.gov/pubmed/36788810
http://dx.doi.org/10.7717/peerj.14774
Descripción
Sumario:Forest plantations and natural forests perform a relevant role in capturing CO(2) and reducing greenhouse gas concentrations. The objective of this study was to compare the diameter increment, biomass and carbon accumulation in a plantation of Pinus durangensis and a naturally regenerated stand. The data were collected from 32 circular plots of 100 m(2) (16 plots in the planted site and 16 in naturally regenerated area). At each plot, the diameter at the base (cm) and height (m) of all seedlings were measured using a Vernier and tape measure, and a seedling was destructively sampled collecting one cross-section at the base of the stump. The annual ring-width increment of each sampled seedling was recorded to obtain its diameter at the base and estimate annual aboveground biomass and carbon accumulation through allometric equations. The response variables were evaluated using mixed-effects ANOVA models. Results indicated that there were significant differences (P ≤ 0.05) on annual tree-ring width growth, biomass and carbon accumulation. The plantation seedlings showed significantly higher growth rates, biomass and carbon accumulation at most evaluated years. After 7 years of growth the lines of current annual increment (CAI) and mean annual increment (MAI) in basal diameter for both the plantation and the natural regeneration have not yet intersected. Both forest plantations and naturally regenerated stands of the studied tree species may be suitable alternatives to promote CO(2) capture and increase timber production.