Cargando…
Preoperative Evaluation of Hepatocellular Carcinoma Differentiation Using Contrast-Enhanced Ultrasound-Based Deep-Learning Radiomics Model
OBJECTIVE: Distinguishing the degree of differentiation, hepatocellular carcinoma (HCC) has important clinical significance in the therapeutic decision-making and patient prognosis evaluation. METHODS: We developed a deep-learning radiomics (DLR) model based on contrast-enhanced ultrasound (CEUS) to...
Autores principales: | Qin, Xiachuan, Hu, Xiaomin, Xiao, Weihan, Zhu, Chao, Ma, Qianqin, Zhang, Chaoxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922506/ https://www.ncbi.nlm.nih.gov/pubmed/36789250 http://dx.doi.org/10.2147/JHC.S400166 |
Ejemplares similares
-
Noninvasive Evaluation of Lupus Nephritis Activity Using a Radiomics Machine Learning Model Based on Ultrasound
por: Qin, Xiachuan, et al.
Publicado: (2023) -
A novel clinical−radiomic nomogram for the crescent status in IgA nephropathy
por: Qin, Xiachuan, et al.
Publicado: (2023) -
Development of a novel combined nomogram model integrating deep learning radiomics to diagnose IgA nephropathy clinically
por: Qin, Xiachuan, et al.
Publicado: (2023) -
Noninvasive evaluation of IgA nephropathy fibrosis using Doppler ultrasound
por: Qin, Xiachuan, et al.
Publicado: (2022) -
Deep learning-based radiomics based on contrast-enhanced ultrasound predicts early recurrence and survival outcome in hepatocellular carcinoma
por: Huang, Zhe, et al.
Publicado: (2022)