Cargando…
Heterogeneous recurrent spiking neural network for spatio-temporal classification
Spiking Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence. Although recent SNNs trained with supervised backpropagation show classification accuracy comparable to deep networks, the performance of unsupervised learning-based SNNs remains...
Autores principales: | Chakraborty, Biswadeep, Mukhopadhyay, Saibal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922697/ https://www.ncbi.nlm.nih.gov/pubmed/36793542 http://dx.doi.org/10.3389/fnins.2023.994517 |
Ejemplares similares
-
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021) -
MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning
por: Kim, Daehyun, et al.
Publicado: (2022) -
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
por: She, Xueyuan, et al.
Publicado: (2021) -
Efficient human activity recognition with spatio-temporal spiking neural networks
por: Li, Yuhang, et al.
Publicado: (2023) -
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
por: Tapson, Jonathan C., et al.
Publicado: (2013)