Cargando…
Forecasting the concentration of NO2 using statistical and machine learning methods: A case study in the UAE
Nitrogen dioxide (NO2) is the most active pollutant gas emitted in the industrial era and is highly correlated with human activities. Tracking NO2 emissions and predicting their concentrations represent important steps toward controlling pollution and setting rules to protect people's health in...
Autores principales: | Al Yammahi, Aishah, Aung, Zeyar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922785/ https://www.ncbi.nlm.nih.gov/pubmed/36793966 http://dx.doi.org/10.1016/j.heliyon.2022.e12584 |
Ejemplares similares
-
A study of nitrogen dioxide (NO(2)) periodicity over the United Arab Emirates using wavelet analysis
por: Al Yammahi, Aishah, et al.
Publicado: (2022) -
Statistical and Machine Learning forecasting methods: Concerns and ways forward
por: Makridakis, Spyros, et al.
Publicado: (2018) -
Statistical methods for forecasting
por: Abraham, Bovas, et al.
Publicado: (2009) -
Severity of vehicle-to-vehicle accidents in the UAE: An exploratory analysis using machine learning algorithms
por: Maghelal, Praveen, et al.
Publicado: (2023) -
Forecasting induced seismicity in Oklahoma using machine learning methods
por: Qin, Yan, et al.
Publicado: (2022)