Cargando…
Generating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasks
Explaining model decisions from medical image inputs is necessary for deploying deep neural network (DNN) based models as clinical decision assistants. The acquisition of multi-modal medical images is pervasive in practice for supporting the clinical decision-making process. Multi-modal images captu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922805/ https://www.ncbi.nlm.nih.gov/pubmed/36793676 http://dx.doi.org/10.1016/j.mex.2023.102009 |
Sumario: | Explaining model decisions from medical image inputs is necessary for deploying deep neural network (DNN) based models as clinical decision assistants. The acquisition of multi-modal medical images is pervasive in practice for supporting the clinical decision-making process. Multi-modal images capture different aspects of the same underlying regions of interest. Explaining DNN decisions on multi-modal medical images is thus a clinically important problem. Our methods adopt commonly-used post-hoc artificial intelligence feature attribution methods to explain DNN decisions on multi-modal medical images, including two categories of gradient- and perturbation-based methods. • Gradient-based explanation methods – such as Guided BackProp, DeepLift – utilize the gradient signal to estimate the feature importance for model prediction. • Perturbation-based methods – such as occlusion, LIME, kernel SHAP – utilize the input-output sampling pairs to estimate the feature importance. • We describe the implementation details on how to make the methods work for multi-modal image input, and make the implementation code available. |
---|