Cargando…
Generating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasks
Explaining model decisions from medical image inputs is necessary for deploying deep neural network (DNN) based models as clinical decision assistants. The acquisition of multi-modal medical images is pervasive in practice for supporting the clinical decision-making process. Multi-modal images captu...
Autores principales: | Jin, Weina, Li, Xiaoxiao, Fatehi, Mostafa, Hamarneh, Ghassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922805/ https://www.ncbi.nlm.nih.gov/pubmed/36793676 http://dx.doi.org/10.1016/j.mex.2023.102009 |
Ejemplares similares
-
Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations
por: Sharma, Bhanushee, et al.
Publicado: (2023) -
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
por: Helland, Ragnhild Holden, et al.
Publicado: (2023) -
Post-hoc selection of dynamic causal models
por: Rosa, M.J., et al.
Publicado: (2012) -
A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods
por: Vilone, Giulia, et al.
Publicado: (2021) -
Oracle and storage IOs, explanations and experience at CERN
por: Grancher, E
Publicado: (2009)