Cargando…
Engineered living materials grown from programmable Aspergillus niger mycelial pellets
The development of engineered living materials (ELMs) has recently attracted significant attention from researchers across multiple disciplines. Fungi-derived ELMs represent a new type of macroscale, cost-effective, environmentally sustainable materials. However, current fungi-based ELMs either have...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922812/ https://www.ncbi.nlm.nih.gov/pubmed/36793323 http://dx.doi.org/10.1016/j.mtbio.2023.100545 |
Sumario: | The development of engineered living materials (ELMs) has recently attracted significant attention from researchers across multiple disciplines. Fungi-derived ELMs represent a new type of macroscale, cost-effective, environmentally sustainable materials. However, current fungi-based ELMs either have to undergo a final process to heat-kill the living cells or rely on the co-culture with a model organism for functional modification, which hinders the engineerability and versatility of these materials. In this study, we report a new type of ELMs – grown from programmable Aspergillus niger mycelial pellets – by a simple filtration step under ambient conditions. We demonstrate that A. Niger pellets can provide sufficient cohesion to maintain large-area self-supporting structures even under low pH conditions. Subsequently, by tuning the inducible expression of genes involved in melanin biosynthesis, we verified the fabrication of self-supporting living membrane materials with tunable colors in response to xylose concentration in the surroundings, which can be further explored as a potential biosensor for detecting xylose level in industrial wastewater. Notably, the living materials remain alive, self-regenerative, and functional even after 3-month storage. Thus, beyond reporting a new engineerable fungi chassis for constructing ELMs, our study provides new opportunities for developing bulk living materials for real-world applications such as the production of fabrics, packaging materials, and biosensors. |
---|