Cargando…

Effects of bias current and control of multistability in 3D hopfield neural network

This work studies the dynamics of a three dimensional Hopfield neural network focusing on the impact of bias terms. In the presence of bias terms, the models displays an odd symmetry and experiences typical behaviors including period doubling, spontaneous symmetry breaking, merging crisis, bursting...

Descripción completa

Detalles Bibliográficos
Autores principales: Boui A Boya, Bertrand Frederick, Ramakrishnan, Balamurali, Effa, Joseph Yves, Kengne, Jacques, Rajagopal, Karthikeyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922829/
https://www.ncbi.nlm.nih.gov/pubmed/36793969
http://dx.doi.org/10.1016/j.heliyon.2023.e13034
Descripción
Sumario:This work studies the dynamics of a three dimensional Hopfield neural network focusing on the impact of bias terms. In the presence of bias terms, the models displays an odd symmetry and experiences typical behaviors including period doubling, spontaneous symmetry breaking, merging crisis, bursting oscillation, coexisting attractors and coexisting period-doubling reversals as well. Multistability control is investigated by employing the linear augmentation feedback strategy. We numerically prove that the multistable neural system can be adjusted to experience only a single attractor behavior when the coupling coefficient is gradually monitored. Experimental results from a microcontroller based realization of the underlined neural system are consistent with the theoretical analysis.