Cargando…

Stress-testing pelvic autosegmentation algorithms using anatomical edge cases

Commercial autosegmentation has entered clinical use, however real-world performance may suffer in certain cases. We aimed to assess the influence of anatomic variants on performance. We identified 112 prostate cancer patients with anatomic variations (edge cases). Pelvic anatomy was autosegmented u...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanwar, Aasheesh, Merz, Brandon, Claunch, Cheryl, Rana, Shushan, Hung, Arthur, Thompson, Reid F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922913/
https://www.ncbi.nlm.nih.gov/pubmed/36793398
http://dx.doi.org/10.1016/j.phro.2023.100413
_version_ 1784887632859234304
author Kanwar, Aasheesh
Merz, Brandon
Claunch, Cheryl
Rana, Shushan
Hung, Arthur
Thompson, Reid F.
author_facet Kanwar, Aasheesh
Merz, Brandon
Claunch, Cheryl
Rana, Shushan
Hung, Arthur
Thompson, Reid F.
author_sort Kanwar, Aasheesh
collection PubMed
description Commercial autosegmentation has entered clinical use, however real-world performance may suffer in certain cases. We aimed to assess the influence of anatomic variants on performance. We identified 112 prostate cancer patients with anatomic variations (edge cases). Pelvic anatomy was autosegmented using three commercial tools. To evaluate performance, Dice similarity coefficients, and mean surface and 95% Hausdorff distances were calculated versus clinician-delineated references. Deep learning autosegmentation outperformed atlas-based and model-based methods. However, edge case performance was lower versus the normal cohort (0.12 mean DSC reduction). Anatomic variation presents challenges to commercial autosegmentation.
format Online
Article
Text
id pubmed-9922913
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99229132023-02-14 Stress-testing pelvic autosegmentation algorithms using anatomical edge cases Kanwar, Aasheesh Merz, Brandon Claunch, Cheryl Rana, Shushan Hung, Arthur Thompson, Reid F. Phys Imaging Radiat Oncol Technical Note Commercial autosegmentation has entered clinical use, however real-world performance may suffer in certain cases. We aimed to assess the influence of anatomic variants on performance. We identified 112 prostate cancer patients with anatomic variations (edge cases). Pelvic anatomy was autosegmented using three commercial tools. To evaluate performance, Dice similarity coefficients, and mean surface and 95% Hausdorff distances were calculated versus clinician-delineated references. Deep learning autosegmentation outperformed atlas-based and model-based methods. However, edge case performance was lower versus the normal cohort (0.12 mean DSC reduction). Anatomic variation presents challenges to commercial autosegmentation. Elsevier 2023-01-16 /pmc/articles/PMC9922913/ /pubmed/36793398 http://dx.doi.org/10.1016/j.phro.2023.100413 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Technical Note
Kanwar, Aasheesh
Merz, Brandon
Claunch, Cheryl
Rana, Shushan
Hung, Arthur
Thompson, Reid F.
Stress-testing pelvic autosegmentation algorithms using anatomical edge cases
title Stress-testing pelvic autosegmentation algorithms using anatomical edge cases
title_full Stress-testing pelvic autosegmentation algorithms using anatomical edge cases
title_fullStr Stress-testing pelvic autosegmentation algorithms using anatomical edge cases
title_full_unstemmed Stress-testing pelvic autosegmentation algorithms using anatomical edge cases
title_short Stress-testing pelvic autosegmentation algorithms using anatomical edge cases
title_sort stress-testing pelvic autosegmentation algorithms using anatomical edge cases
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922913/
https://www.ncbi.nlm.nih.gov/pubmed/36793398
http://dx.doi.org/10.1016/j.phro.2023.100413
work_keys_str_mv AT kanwaraasheesh stresstestingpelvicautosegmentationalgorithmsusinganatomicaledgecases
AT merzbrandon stresstestingpelvicautosegmentationalgorithmsusinganatomicaledgecases
AT claunchcheryl stresstestingpelvicautosegmentationalgorithmsusinganatomicaledgecases
AT ranashushan stresstestingpelvicautosegmentationalgorithmsusinganatomicaledgecases
AT hungarthur stresstestingpelvicautosegmentationalgorithmsusinganatomicaledgecases
AT thompsonreidf stresstestingpelvicautosegmentationalgorithmsusinganatomicaledgecases