Cargando…
Refining empiric subgroups of pediatric sepsis using machine-learning techniques on observational data
Sepsis contributes to 1 of every 5 deaths globally with 3 million per year occurring in children. To improve clinical outcomes in pediatric sepsis, it is critical to avoid “one-size-fits-all” approaches and to employ a precision medicine approach. To advance a precision medicine approach to pediatri...
Autores principales: | Qin, Yidi, Caldino Bohn, Rebecca I., Sriram, Aditya, Kernan, Kate F., Carcillo, Joseph A., Kim, Soyeon, Park, Hyun Jung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923004/ https://www.ncbi.nlm.nih.gov/pubmed/36793336 http://dx.doi.org/10.3389/fped.2023.1035576 |
Ejemplares similares
-
A Pediatric Sepsis Protocol Reduced Mortality and Dysfunctions in a Brazilian Public Hospital
por: Medeiros, Daniela Nasu Monteiro, et al.
Publicado: (2021) -
Pediatric Severe Sepsis Prediction Using Machine Learning
por: Le, Sidney, et al.
Publicado: (2019) -
Endothelial Damage in Sepsis: The Importance of Systems Biology
por: Fernández-Sarmiento, Jaime, et al.
Publicado: (2022) -
Identification of Potential Diagnostic Gene Targets for Pediatric Sepsis Based on Bioinformatics and Machine Learning
por: Qiao, Ying, et al.
Publicado: (2021) -
Updates on pediatric sepsis
por: Cruz, Andrea T., et al.
Publicado: (2020)