Cargando…
Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state
The misreporting of administrative health data creates an inequitable distribution of scarce health resources and weakens transparency and accountability within health systems. In the mid-2010s, an Indian state introduced a district ranking system to monitor the monthly performance of health program...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923373/ https://www.ncbi.nlm.nih.gov/pubmed/35941075 http://dx.doi.org/10.1093/heapol/czac065 |
_version_ | 1784887725071007744 |
---|---|
author | Meghani, Ankita Rodríguez, Daniela C Peters, David H Bennett, Sara |
author_facet | Meghani, Ankita Rodríguez, Daniela C Peters, David H Bennett, Sara |
author_sort | Meghani, Ankita |
collection | PubMed |
description | The misreporting of administrative health data creates an inequitable distribution of scarce health resources and weakens transparency and accountability within health systems. In the mid-2010s, an Indian state introduced a district ranking system to monitor the monthly performance of health programmes alongside a set of data quality initiatives. However, questions remain about the role of data manipulation in compromising the accuracy of data available for decision-making. We used qualitative approaches to examine the opportunities, pressures and rationalization of potential data manipulation. Using purposive sampling, we interviewed 48 district-level respondents from high-, middle- and low-ranked districts and 35 division- and state-level officials, all of whom had data-related or programme monitoring responsibilities. Additionally, we observed 14 district-level meetings where administrative data were reviewed. District respondents reported that the quality of administrative data was sometimes compromised to achieve top district rankings. The pressure to exaggerate progress was a symptom of the broader system for assessing health performance that was often viewed as punitive and where district- and state-level superiors were viewed as having limited ability to ensure accountability for data quality. However, district respondents described being held accountable for results despite lacking the adequate capacity to deliver on them. Many rationalized data manipulation to cope with high pressures, to safeguard their jobs and, in some cases, for personal financial gain. Moreover, because data manipulation was viewed as a socially acceptable practice, ethical arguments against it were less effective. Potential entry points to mitigate data manipulation include (1) changing the incentive structures to place equal emphasis on the quality of data informing the performance data (e.g. district rankings), (2) strengthening checks and balances to reinforce the integrity of data-related processes within districts and (3) implementing policies to make data manipulation an unacceptable anomaly rather than a norm. |
format | Online Article Text |
id | pubmed-9923373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99233732023-02-13 Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state Meghani, Ankita Rodríguez, Daniela C Peters, David H Bennett, Sara Health Policy Plan Original Article The misreporting of administrative health data creates an inequitable distribution of scarce health resources and weakens transparency and accountability within health systems. In the mid-2010s, an Indian state introduced a district ranking system to monitor the monthly performance of health programmes alongside a set of data quality initiatives. However, questions remain about the role of data manipulation in compromising the accuracy of data available for decision-making. We used qualitative approaches to examine the opportunities, pressures and rationalization of potential data manipulation. Using purposive sampling, we interviewed 48 district-level respondents from high-, middle- and low-ranked districts and 35 division- and state-level officials, all of whom had data-related or programme monitoring responsibilities. Additionally, we observed 14 district-level meetings where administrative data were reviewed. District respondents reported that the quality of administrative data was sometimes compromised to achieve top district rankings. The pressure to exaggerate progress was a symptom of the broader system for assessing health performance that was often viewed as punitive and where district- and state-level superiors were viewed as having limited ability to ensure accountability for data quality. However, district respondents described being held accountable for results despite lacking the adequate capacity to deliver on them. Many rationalized data manipulation to cope with high pressures, to safeguard their jobs and, in some cases, for personal financial gain. Moreover, because data manipulation was viewed as a socially acceptable practice, ethical arguments against it were less effective. Potential entry points to mitigate data manipulation include (1) changing the incentive structures to place equal emphasis on the quality of data informing the performance data (e.g. district rankings), (2) strengthening checks and balances to reinforce the integrity of data-related processes within districts and (3) implementing policies to make data manipulation an unacceptable anomaly rather than a norm. Oxford University Press 2022-08-09 /pmc/articles/PMC9923373/ /pubmed/35941075 http://dx.doi.org/10.1093/heapol/czac065 Text en © The Author(s) 2022. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Meghani, Ankita Rodríguez, Daniela C Peters, David H Bennett, Sara Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state |
title | Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state |
title_full | Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state |
title_fullStr | Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state |
title_full_unstemmed | Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state |
title_short | Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state |
title_sort | understanding reasons for and strategic responses to administrative health data misreporting in an indian state |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923373/ https://www.ncbi.nlm.nih.gov/pubmed/35941075 http://dx.doi.org/10.1093/heapol/czac065 |
work_keys_str_mv | AT meghaniankita understandingreasonsforandstrategicresponsestoadministrativehealthdatamisreportinginanindianstate AT rodriguezdanielac understandingreasonsforandstrategicresponsestoadministrativehealthdatamisreportinginanindianstate AT petersdavidh understandingreasonsforandstrategicresponsestoadministrativehealthdatamisreportinginanindianstate AT bennettsara understandingreasonsforandstrategicresponsestoadministrativehealthdatamisreportinginanindianstate |