Cargando…
End-to-end emotional speech recognition using acoustic model adaptation based on knowledge distillation
The end-to-end approach provides better performance in speech recognition compared to the traditional hidden Markov model-deep neural network (HMM-DNN)-based approach, but still shows poor performance in abnormal speech, especially emotional speech. The optimal solution is to build an acoustic model...
Autores principales: | Yun, Hong-In, Park, Jeong-Sik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923643/ https://www.ncbi.nlm.nih.gov/pubmed/36817556 http://dx.doi.org/10.1007/s11042-023-14680-y |
Ejemplares similares
-
Distillation of an End-to-End Oracle for Face Verification and Recognition Sensors †
por: Guzzi, Francesco, et al.
Publicado: (2020) -
Dynamic Acoustic Unit Augmentation with BPE-Dropout for Low-Resource End-to-End Speech Recognition
por: Laptev, Aleksandr, et al.
Publicado: (2021) -
Recognition of Emotions in Mexican Spanish Speech: An Approach Based on Acoustic Modelling of Emotion-Specific Vowels
por: Caballero-Morales, Santiago-Omar
Publicado: (2013) -
End-to-end speech emotion recognition using a novel context-stacking dilated convolution neural network
por: Tang, Duowei, et al.
Publicado: (2021) -
A study of transformer-based end-to-end speech recognition system for Kazakh language
por: Orken, Mamyrbayev, et al.
Publicado: (2022)