Cargando…
Response of microbial community and biological nitrogen removal to the accumulation of nonylphenol in sequencing batch reactor
The widespread existence of nonylphenol in the environmental rendered from wastewater discharge has become a growing concern for its endocrine disrupting effects on microorganisms. In this study, the performance of nitrifying and denitrifying microbial community in a sequencing batch reactor (SBR) w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923645/ https://www.ncbi.nlm.nih.gov/pubmed/36817166 http://dx.doi.org/10.1007/s13762-023-04825-9 |
Sumario: | The widespread existence of nonylphenol in the environmental rendered from wastewater discharge has become a growing concern for its endocrine disrupting effects on microorganisms. In this study, the performance of nitrifying and denitrifying microbial community in a sequencing batch reactor (SBR) was investigated under different nonylphenol concentrations. The SBR was shown to be less effective in nitrogen removal at higher concentration of nonylphenol. Proteobacteria, Bacteroidetes, and Actinobacteria were characterized by 454 pyrosequencing as the dominant bacteria, nitrogen removal functional bacteria in these three phyla were inhibited by nonylphenol, and Proteobacteria and Actinobacteria were more sensitive to nonylphenol. With the accumulation of nonylphenol, the population of the most abundant denitrifying bacteria (Thauera spp.) and nitrifying bacteria (Nitrosomonas spp.) significantly reduced. Microbial diversity increased due to nonylphenol perturbation, which is indicated by the changes in microbial alpha diversity. Principal component analysis showed high similarity between microbial community in low and high concentration of nonylphenol, and the core genera involved in nitrogen removal had a low correlation with other genera shown in co-occurrence network. Moreover, linear discriminant analysis effect size analysis revealed intergroup differences in microorganisms. The mechanism of accumulated NP on the diversity and metabolism of the microbial community was examined. This paper established a theoretical foundation for the treatment of NP-containing wastewater and provided hints for further research about NP impact on biological nitrogen removal. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13762-023-04825-9. |
---|