Cargando…

DeepStruc: towards structure solution from pair distribution function data using deep generative models

Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from...

Descripción completa

Detalles Bibliográficos
Autores principales: Kjær, Emil T. S., Anker, Andy S., Weng, Marcus N., Billinge, Simon J. L., Selvan, Raghavendra, Jensen, Kirsten M. Ø.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923795/
https://www.ncbi.nlm.nih.gov/pubmed/36798882
http://dx.doi.org/10.1039/d2dd00086e
_version_ 1784887785415507968
author Kjær, Emil T. S.
Anker, Andy S.
Weng, Marcus N.
Billinge, Simon J. L.
Selvan, Raghavendra
Jensen, Kirsten M. Ø.
author_facet Kjær, Emil T. S.
Anker, Andy S.
Weng, Marcus N.
Billinge, Simon J. L.
Selvan, Raghavendra
Jensen, Kirsten M. Ø.
author_sort Kjær, Emil T. S.
collection PubMed
description Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from total scattering data by using a conditional variational autoencoder. We first apply DeepStruc to PDFs from seven different structure types of monometallic nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including PDFs from nanoparticles that are not present in the training distribution. We also apply DeepStruc to a system of hcp, fcc and stacking faulted nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an interpolation between hcp and fcc nanoparticles and is able to solve stacking faulted structures from PDFs. Our findings suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials.
format Online
Article
Text
id pubmed-9923795
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-99237952023-02-14 DeepStruc: towards structure solution from pair distribution function data using deep generative models Kjær, Emil T. S. Anker, Andy S. Weng, Marcus N. Billinge, Simon J. L. Selvan, Raghavendra Jensen, Kirsten M. Ø. Digit Discov Chemistry Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from total scattering data by using a conditional variational autoencoder. We first apply DeepStruc to PDFs from seven different structure types of monometallic nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including PDFs from nanoparticles that are not present in the training distribution. We also apply DeepStruc to a system of hcp, fcc and stacking faulted nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an interpolation between hcp and fcc nanoparticles and is able to solve stacking faulted structures from PDFs. Our findings suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials. RSC 2022-11-28 /pmc/articles/PMC9923795/ /pubmed/36798882 http://dx.doi.org/10.1039/d2dd00086e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Kjær, Emil T. S.
Anker, Andy S.
Weng, Marcus N.
Billinge, Simon J. L.
Selvan, Raghavendra
Jensen, Kirsten M. Ø.
DeepStruc: towards structure solution from pair distribution function data using deep generative models
title DeepStruc: towards structure solution from pair distribution function data using deep generative models
title_full DeepStruc: towards structure solution from pair distribution function data using deep generative models
title_fullStr DeepStruc: towards structure solution from pair distribution function data using deep generative models
title_full_unstemmed DeepStruc: towards structure solution from pair distribution function data using deep generative models
title_short DeepStruc: towards structure solution from pair distribution function data using deep generative models
title_sort deepstruc: towards structure solution from pair distribution function data using deep generative models
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923795/
https://www.ncbi.nlm.nih.gov/pubmed/36798882
http://dx.doi.org/10.1039/d2dd00086e
work_keys_str_mv AT kjæremilts deepstructowardsstructuresolutionfrompairdistributionfunctiondatausingdeepgenerativemodels
AT ankerandys deepstructowardsstructuresolutionfrompairdistributionfunctiondatausingdeepgenerativemodels
AT wengmarcusn deepstructowardsstructuresolutionfrompairdistributionfunctiondatausingdeepgenerativemodels
AT billingesimonjl deepstructowardsstructuresolutionfrompairdistributionfunctiondatausingdeepgenerativemodels
AT selvanraghavendra deepstructowardsstructuresolutionfrompairdistributionfunctiondatausingdeepgenerativemodels
AT jensenkirstenmø deepstructowardsstructuresolutionfrompairdistributionfunctiondatausingdeepgenerativemodels