Cargando…

Evolutionary design of machine-learning-predicted bulk metallic glasses

The size of composition space means even coarse grid-based searches for interesting alloys are infeasible unless heavily constrained, which requires prior knowledge and reduces the possibility of making novel discoveries. Genetic algorithms provide a practical alternative to brute-force searching, b...

Descripción completa

Detalles Bibliográficos
Autores principales: Forrest, Robert M., Greer, A. Lindsay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923804/
https://www.ncbi.nlm.nih.gov/pubmed/36798881
http://dx.doi.org/10.1039/d2dd00078d
Descripción
Sumario:The size of composition space means even coarse grid-based searches for interesting alloys are infeasible unless heavily constrained, which requires prior knowledge and reduces the possibility of making novel discoveries. Genetic algorithms provide a practical alternative to brute-force searching, by rapidly homing in on fruitful regions and discarding others. Here, we apply the genetic operators of competition, recombination, and mutation to a population of trial alloy compositions, with the goal of evolving towards candidates with excellent glass-forming ability, as predicted by an ensemble neural-network model. Optimization focuses on the maximum casting diameter of a fully glassy rod, D(max), the width of the supercooled region, ΔT(x), and the price-per-kilogramme, to identify commercially viable novel glass-formers. The genetic algorithm is also applied with specific constraints, to identify novel aluminium-based and copper–zirconium-based glass-forming alloys, and to optimize existing zirconium-based alloys.