Cargando…
Evolutionary design of machine-learning-predicted bulk metallic glasses
The size of composition space means even coarse grid-based searches for interesting alloys are infeasible unless heavily constrained, which requires prior knowledge and reduces the possibility of making novel discoveries. Genetic algorithms provide a practical alternative to brute-force searching, b...
Autores principales: | Forrest, Robert M., Greer, A. Lindsay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923804/ https://www.ncbi.nlm.nih.gov/pubmed/36798881 http://dx.doi.org/10.1039/d2dd00078d |
Ejemplares similares
-
Machine-learning improves understanding of glass formation in metallic systems
por: Forrest, Robert M., et al.
Publicado: (2022) -
Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
por: Ghorbani, Alireza, et al.
Publicado: (2022) -
Extreme rejuvenation and softening in a bulk metallic glass
por: Pan, J., et al.
Publicado: (2018) -
Bulk metallic glasses
por: George, Thomas F, et al.
Publicado: (2011) -
A predictive structural model for bulk metallic glasses
por: Laws, K. J., et al.
Publicado: (2015)