Cargando…

Unified one-dimensional finite element for the analysis of hyperelastic soft materials and structures

Based on the Carrera unified formulation (CUF) and first-invariant hyperelasticity, this work proposes a displacement-based high order one-dimensional (1 D) finite element model for the geometrical and physical nonlinear analysis of isotropic, slightly compressible soft material structures. Differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Pagani, A., Carrera, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923886/
https://www.ncbi.nlm.nih.gov/pubmed/36798852
http://dx.doi.org/10.1080/15376494.2021.2013585
Descripción
Sumario:Based on the Carrera unified formulation (CUF) and first-invariant hyperelasticity, this work proposes a displacement-based high order one-dimensional (1 D) finite element model for the geometrical and physical nonlinear analysis of isotropic, slightly compressible soft material structures. Different strain energy functions are considered and they are decomposed in a volumetric and an isochoric part, the former acting as penalization of incompressibility. Given the material Jacobian tensor, the nonlinear governing equations are derived in a unified, total Lagrangian form by expanding the three-dimensional displacement field with arbitrary cross-section polynomials and using the virtual work principle. The exact analytical expressions of the elemental internal force vector and tangent matrix of the unified beam model are also provided. Several problems are addressed, including uniaxial tension, bending of a slender structure, compression of a three-dimensional block, and a thick pinched cylinder. The proposed model is compared with analytical solutions and literature results whenever possible. It is demonstrated that, although 1 D, the present CUF-based finite element can address simple to complex nonlinear hyperelastic phenomena, depending on the theory approximation order.