Cargando…
Short-term prediction of coronary artery disease using serum metabolomic patterns
Autores principales: | Petrazzini, Ben Omega, Vaid, Akhil, Park, Joshua K., Marquez-Luna, Carla, Vy, Ha My, Saha, Aparna, Chaudhary, Kumardeep, Cho, Judy, Chan, Lili, Argulian, Edgar, Narula, Jagat, Nadkarni, Girish, Do, Ron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9924019/ https://www.ncbi.nlm.nih.gov/pubmed/36788979 http://dx.doi.org/10.1016/j.ahjo.2022.100232 |
Ejemplares similares
-
Machine Learning Identifies Plasma Metabolites Associated With Heart Failure in Underrepresented Populations With the
TTR V122I Variant
por: Park, Joshua K., et al.
Publicado: (2023) -
A foundational vision transformer improves diagnostic performance for electrocardiograms
por: Vaid, Akhil, et al.
Publicado: (2023) -
Multi-center retrospective cohort study applying deep learning to electrocardiograms to identify left heart valvular dysfunction
por: Vaid, Akhil, et al.
Publicado: (2023) -
Quantitative prediction of right ventricular and size and function from the electrocardiogram
por: Duong, Son Q., et al.
Publicado: (2023) -
Deep learning and the electrocardiogram: review of the current state-of-the-art
por: Somani, Sulaiman, et al.
Publicado: (2021)