Cargando…
Automated Molecular Subtyping of Breast Carcinoma Using Deep Learning Techniques
Objective: Molecular subtyping is an important procedure for prognosis and targeted therapy of breast carcinoma, the most common type of malignancy affecting women. Immunohistochemistry (IHC) analysis is the widely accepted method for molecular subtyping. It involves the assessment of the four molec...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9924555/ https://www.ncbi.nlm.nih.gov/pubmed/36816095 http://dx.doi.org/10.1109/JTEHM.2023.3241613 |
Ejemplares similares
-
An integrative deep learning framework for classifying molecular subtypes of breast cancer
por: Mohaiminul Islam, Md., et al.
Publicado: (2020) -
AB012. Automated histologic subtyping of thymic epithelial tumors with deep learning
por: Dolezal, James M., et al.
Publicado: (2022) -
Automated Monkeypox Skin Lesion Detection Using Deep Learning and Transfer Learning Techniques
por: Jaradat, Ameera S., et al.
Publicado: (2023) -
Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis
por: Dunn, Bryce, et al.
Publicado: (2023) -
Classifying Breast Cancer Molecular Subtypes by Using Deep Clustering Approach
por: Rohani, Narjes, et al.
Publicado: (2020)