Cargando…
Auditory stimulation and deep learning predict awakening from coma after cardiac arrest
Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a ‘grey zone’, with unce...
Autores principales: | Aellen, Florence M, Alnes, Sigurd L, Loosli, Fabian, Rossetti, Andrea O, Zubler, Frédéric, De Lucia, Marzia, Tzovara, Athina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9924902/ https://www.ncbi.nlm.nih.gov/pubmed/36637902 http://dx.doi.org/10.1093/brain/awac340 |
Ejemplares similares
-
Deep learning for EEG-based prognostication after cardiac arrest: from current research to future clinical applications
por: Zubler, Frederic, et al.
Publicado: (2023) -
The effect of sedation and time after cardiac arrest on coma outcome prognostication based on EEG power spectra
por: Pelentritou, Andria, et al.
Publicado: (2023) -
Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma
por: Pfeiffer, Christian, et al.
Publicado: (2018) -
Robust discrimination between EEG responses to categories of environmental sounds in early coma
por: Cossy, Natacha, et al.
Publicado: (2014) -
Predictive value of EEG-awakening for behavioral awakening from coma
por: Kang, Xiao-gang, et al.
Publicado: (2015)