Cargando…

Magnesium ions improve vasomotor function in exhausted rats

To observe the effect of magnesium ion on vascular function in rats after long-term exhaustive exercise. Forty male SD rats were divided into two groups, the control group (CON group, n = 20) and the exhaustive exercise group (EEE group, n = 20). Exhausted rats performed 1W adaptive swimming exercis...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dan, Li, Zong-Xiang, Jiang, Dong-Mou, Liu, Yan-Zhong, Wang, Xin, Liu, Yi-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925009/
https://www.ncbi.nlm.nih.gov/pubmed/36780490
http://dx.doi.org/10.1371/journal.pone.0279318
Descripción
Sumario:To observe the effect of magnesium ion on vascular function in rats after long-term exhaustive exercise. Forty male SD rats were divided into two groups, the control group (CON group, n = 20) and the exhaustive exercise group (EEE group, n = 20). Exhausted rats performed 1W adaptive swimming exercise (6 times/W, 15min/time), and then followed by 3W formal exhaustive exercise intervention. Hematoxylin and eosin (HE) staining was used to detect the morphological changes of rat thoracic aorta. The contents of interleukin-1 β (IL-1β) and tumor necrosis factor–α (TNF-α) in serum of rats were determined by enzyme-linked immunosorbent assay (ELISA), and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO) and endothelin 1 (ET-1) in serum of rats were determined by biochemical kit. Vascular ring test detects vascular function. Compared with the CON group, the smooth muscle layer of the EEE group became thicker, the cell arrangement was disordered, and the integrity of endothelial cells was destroyed; the serum Mg(2+) in EEE group was decreased; the serum levels of IL-1β, TNF-α, MDA and ROS in EEE group were significantly higher than those in the CON group (P are all less than 0.05); the serum NO content in EEE group was significantly decreased, and the ratio of NO/ET-1 was significantly decreased. In the exhaustion group, the vasoconstriction response to KCl was increased, and the relaxation response to Ach was weakened, while 4.8mM Mg(2+) could significantly improve this phenomenon (P are all less than 0.01). The damage of vascular morphology and function in rats after exhaustion exercise may be related to the significant increase of serum IL-1β, TNF-α, ROS, MDA and ET-1/NO ratio in rats after exhaustion exercise, while Mg(2+) can significantly improve the vasomotor function of rats after exhaustion exercise.