Cargando…
Evaluating Histological Subtypes Classification of Primary Lung Cancers on Unenhanced Computed Tomography Based on Random Forest Model
Lung cancer is the leading cause of cancer-related death in many countries, and an accurate histopathological diagnosis is of great importance in subsequent treatment. The aim of this study was to establish the random forest (RF) model based on radiomic features to automatically classify and predict...
Autores principales: | Huang, Jianfeng, He, Wei, Xu, Haijia, Yang, Shan, Dai, Jiajun, Guo, Weifeng, Zeng, Mengsu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925238/ https://www.ncbi.nlm.nih.gov/pubmed/36794098 http://dx.doi.org/10.1155/2023/8964676 |
Ejemplares similares
-
Clinical Usefulness of Unenhanced Computed Tomography in Patients with Acute Pyelonephritis
por: Lee, Anna, et al.
Publicado: (2018) -
Evaluating the Performance of Unenhanced Computed Tomography in the Diagnosis of Pulmonary Embolism
por: Ehsanbakhsh, Alireza, et al.
Publicado: (2021) -
Unenhanced multidetector computed tomography findings in acute central pulmonary embolism
por: Chien, Chiao-Hsuan, et al.
Publicado: (2019) -
Multidetector Computed Tomography for the Assessment of Adnexal Mass: Is Unenhanced CT Scan Necessary?
por: Jung, Sung Il, et al.
Publicado: (2014) -
Low-dose unenhanced computed tomography for diagnosing stone disease in obese patients
por: Abou El-Ghar, Mohamed E., et al.
Publicado: (2012)