Cargando…

Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study

Providing sufficient energy supply and reducing the effects of global warming are serious challenges in the present decades. In recent years, biodiesel has been viewed as an alternative to exhaustible fossil fuels and can potentially reduce global warming. Here we report for the first time the produ...

Descripción completa

Detalles Bibliográficos
Autores principales: Devasan, Rhithuparna, Ruatpuia, Joseph V. L., Gouda, Shiva Prasad, Kodgire, Pravin, Basumatary, Sanjay, Halder, Gopinath, Rokhum, Samuel Lalthazuala
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925450/
https://www.ncbi.nlm.nih.gov/pubmed/36782046
http://dx.doi.org/10.1038/s41598-023-29883-4
Descripción
Sumario:Providing sufficient energy supply and reducing the effects of global warming are serious challenges in the present decades. In recent years, biodiesel has been viewed as an alternative to exhaustible fossil fuels and can potentially reduce global warming. Here we report for the first time the production of biodiesel from oleic acid (OA) as a test substrate using porous sulfonic acid functionalized banana peel waste as a heterogeneous catalyst under microwave irradiation. The morphology and chemical composition of the catalyst was investigated using Powder X-ray diffraction (PXRD) analysis, Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Scanning electron microscopy- Energy dispersive X-ray spectroscopy (SEM–EDX). The SEM–EDX analysis of the catalyst revealed the presence of sulfur in 4.62 wt% amounting to 1.4437 mmol g(−1) sulfonic acids, which is accorded to the high acidity of the reported catalyst. Using response surface methodology (RSM), through a central composite design (CCD) approach, 97.9 ± 0.7% biodiesel yield was observed under the optimized reaction conditions (methanol to OA molar ratio of 20:1, the temperature of 80 °C, catalyst loading of 8 wt% for 55 min). The catalyst showed excellent stability on repeated reuse and can be recycled at least 5 times without much activity loss.