Cargando…

Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning

BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or hist...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Voort, Sebastian R, Incekara, Fatih, Wijnenga, Maarten M J, Kapsas, Georgios, Gahrmann, Renske, Schouten, Joost W, Nandoe Tewarie, Rishi, Lycklama, Geert J, De Witt Hamer, Philip C, Eijgelaar, Roelant S, French, Pim J, Dubbink, Hendrikus J, Vincent, Arnaud J P E, Niessen, Wiro J, van den Bent, Martin J, Smits, Marion, Klein, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925710/
https://www.ncbi.nlm.nih.gov/pubmed/35788352
http://dx.doi.org/10.1093/neuonc/noac166
_version_ 1784888116269547520
author van der Voort, Sebastian R
Incekara, Fatih
Wijnenga, Maarten M J
Kapsas, Georgios
Gahrmann, Renske
Schouten, Joost W
Nandoe Tewarie, Rishi
Lycklama, Geert J
De Witt Hamer, Philip C
Eijgelaar, Roelant S
French, Pim J
Dubbink, Hendrikus J
Vincent, Arnaud J P E
Niessen, Wiro J
van den Bent, Martin J
Smits, Marion
Klein, Stefan
author_facet van der Voort, Sebastian R
Incekara, Fatih
Wijnenga, Maarten M J
Kapsas, Georgios
Gahrmann, Renske
Schouten, Joost W
Nandoe Tewarie, Rishi
Lycklama, Geert J
De Witt Hamer, Philip C
Eijgelaar, Roelant S
French, Pim J
Dubbink, Hendrikus J
Vincent, Arnaud J P E
Niessen, Wiro J
van den Bent, Martin J
Smits, Marion
Klein, Stefan
author_sort van der Voort, Sebastian R
collection PubMed
description BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. METHODS: We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. RESULTS: In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. CONCLUSIONS: We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.
format Online
Article
Text
id pubmed-9925710
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99257102023-02-14 Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning van der Voort, Sebastian R Incekara, Fatih Wijnenga, Maarten M J Kapsas, Georgios Gahrmann, Renske Schouten, Joost W Nandoe Tewarie, Rishi Lycklama, Geert J De Witt Hamer, Philip C Eijgelaar, Roelant S French, Pim J Dubbink, Hendrikus J Vincent, Arnaud J P E Niessen, Wiro J van den Bent, Martin J Smits, Marion Klein, Stefan Neuro Oncol Basic and Translational Investigations BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. METHODS: We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. RESULTS: In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. CONCLUSIONS: We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods. Oxford University Press 2022-07-05 /pmc/articles/PMC9925710/ /pubmed/35788352 http://dx.doi.org/10.1093/neuonc/noac166 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Basic and Translational Investigations
van der Voort, Sebastian R
Incekara, Fatih
Wijnenga, Maarten M J
Kapsas, Georgios
Gahrmann, Renske
Schouten, Joost W
Nandoe Tewarie, Rishi
Lycklama, Geert J
De Witt Hamer, Philip C
Eijgelaar, Roelant S
French, Pim J
Dubbink, Hendrikus J
Vincent, Arnaud J P E
Niessen, Wiro J
van den Bent, Martin J
Smits, Marion
Klein, Stefan
Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
title Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
title_full Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
title_fullStr Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
title_full_unstemmed Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
title_short Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
title_sort combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
topic Basic and Translational Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925710/
https://www.ncbi.nlm.nih.gov/pubmed/35788352
http://dx.doi.org/10.1093/neuonc/noac166
work_keys_str_mv AT vandervoortsebastianr combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT incekarafatih combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT wijnengamaartenmj combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT kapsasgeorgios combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT gahrmannrenske combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT schoutenjoostw combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT nandoetewarierishi combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT lycklamageertj combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT dewitthamerphilipc combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT eijgelaarroelants combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT frenchpimj combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT dubbinkhendrikusj combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT vincentarnaudjpe combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT niessenwiroj combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT vandenbentmartinj combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT smitsmarion combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning
AT kleinstefan combinedmolecularsubtypinggradingandsegmentationofgliomausingmultitaskdeeplearning