Cargando…
A physics-informed neural network based on mixed data sampling for solving modified diffusion equations
We developed a physics-informed neural network based on a mixture of Cartesian grid sampling and Latin hypercube sampling to solve forward and backward modified diffusion equations. We optimized the parameters in the neural networks and the mixed data sampling by considering the squeeze boundary con...
Autores principales: | Fang, Qian, Mou, Xuankang, Li, Shiben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925766/ https://www.ncbi.nlm.nih.gov/pubmed/36781943 http://dx.doi.org/10.1038/s41598-023-29822-3 |
Ejemplares similares
-
Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations
por: Kadeethum, Teeratorn, et al.
Publicado: (2020) -
Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation
por: Pu, Ruilong, et al.
Publicado: (2022) -
Wavelets based physics informed neural networks to solve non-linear differential equations
por: Uddin, Ziya, et al.
Publicado: (2023) -
Interaction of Macromolecular Chain with Phospholipid Membranes in Solutions: A Dissipative Particle Dynamics Simulation Study
por: Wang, Yuane, et al.
Publicado: (2023) -
A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations
por: Sun, Kuo, et al.
Publicado: (2023)