Cargando…
Weakly supervised semantic segmentation for MRI: exploring the advantages and disadvantages of class activation maps for biological image segmentation with soft boundaries
Fully supervised semantic segmentation models require pixel-level annotations that are costly to obtain. As a remedy, weakly supervised semantic segmentation has been proposed, where image-level labels and class activation maps (CAM) can detect discriminative regions for specific class objects. In t...
Autores principales: | Syed, Shaheen, Anderssen, Kathryn E., Stormo, Svein Kristian, Kranz, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925800/ https://www.ncbi.nlm.nih.gov/pubmed/36781947 http://dx.doi.org/10.1038/s41598-023-29665-y |
Ejemplares similares
-
Deep graph cut network for weakly-supervised semantic segmentation
por: Feng, Jiapei, et al.
Publicado: (2021) -
Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process
por: Moghalles, Khaled, et al.
Publicado: (2022) -
Activation extending based on long-range dependencies for weakly supervised semantic segmentation
por: Liu, Haipeng, et al.
Publicado: (2023) -
Boosting Semantic Segmentation by Conditioning the Backbone with Semantic Boundaries
por: Ishikawa, Haruya, et al.
Publicado: (2023) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023)