Cargando…
A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data
Turbulence is a complex phenomenon that has a chaotic nature with multiple spatio-temporal scales, making predictions of turbulent flows a challenging topic. Nowadays, an abundance of high-fidelity databases can be generated by experimental measurements and numerical simulations, but obtaining such...
Autores principales: | Yousif, Mustafa Z., Yu, Linqi, Hoyas, Sergio, Vinuesa, Ricardo, Lim, HeeChang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925827/ https://www.ncbi.nlm.nih.gov/pubmed/36781944 http://dx.doi.org/10.1038/s41598-023-29525-9 |
Ejemplares similares
-
Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023) -
Correction to: Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023) -
Adverse-Pressure-Gradient Effects on Turbulent Boundary Layers: Statistics and Flow-Field Organization
por: Sanmiguel Vila, Carlos, et al.
Publicado: (2017) -
Asymptotic turbulent friction in 2D rough-walled flows
por: Vilquin, Alexandre, et al.
Publicado: (2021) -
Turbulent flow
por: Garde, R J
Publicado: (2010)