Cargando…

Antifungal activity against anthracnose-causing species of homopterocarpin derivatives

Derivatives of 3,9-dimethoxypterocarpan (1, homopterocarpin) were prepared by nitration, amination, and oxidation reactions, among others, and their antifungal activity was evaluated against the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. Derivatives were purified by...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez, Janio, Ramírez, Cesar, Gil, Jesús, Quiñones, Winston, Durango, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925875/
https://www.ncbi.nlm.nih.gov/pubmed/36798775
http://dx.doi.org/10.1016/j.heliyon.2023.e13082
Descripción
Sumario:Derivatives of 3,9-dimethoxypterocarpan (1, homopterocarpin) were prepared by nitration, amination, and oxidation reactions, among others, and their antifungal activity was evaluated against the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. Derivatives were purified by chromatographic techniques and identified by nuclear magnetic resonance spectroscopy. Eight derivatives were obtained from 1 corresponding to 3,9-dimethoxy-8-nitropterocarpan (2), 3,9-dimethoxy-2,8-dinitropterocarpan (3), 3,9-dimethoxy-2,8,10-trinitropterocarpan (4), 2,8-diamino-3,9-dimethoxypterocarpan (5), 3,9-dimethylcoumestan (6), medicarpin (7), 2′-hydroxy-4-(2-hydroxyethylsulfanyl)-7,4′-dimethoxyisoflavan (8), and 4-(2-hydroxyethylsulfanyl)-7,2′,4′-trimethoxyisoflavan (9). The in vitro antifungal activity of the derivatives was determined at concentrations between 35 and 704 μM. Compounds 7 and 8 at 704 μM, showed an inhibition of radial growth and spore germination close to 100%, exceeding that found for the starting compound 1, which was 46%. Growth inhibition assays were also performed for the derivative 8 on papaya fruits (Carica papaya L. cv. Hawaiana) and mango (Mangifera indica L. cv. Hilacha) infected with C. gloeosporioides. Compound 8 showed fungal growth inhibition in fruits higher than that found for 1 and thymol (a recognized natural antifungal), under the same conditions. In general, derivatives that exhibited greater antifungal activity correspond to the compounds containing hydroxyl groups in the structure. Some of the compounds obtained could be considered promising for the control of phytopathogenic fungi.