Cargando…
Nematic phases and elastoresistivity from a multiorbital non-Fermi liquid
We propose and study a two-orbital lattice extension of the Sachdev-Ye-Kitaev model in the large-N limit. The phase diagram of this model features a high-temperature isotropic non-Fermi liquid which undergoes first-order thermal transition into a nematic insulator or continuous thermal transition in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926168/ https://www.ncbi.nlm.nih.gov/pubmed/36603030 http://dx.doi.org/10.1073/pnas.2207903120 |
Sumario: | We propose and study a two-orbital lattice extension of the Sachdev-Ye-Kitaev model in the large-N limit. The phase diagram of this model features a high-temperature isotropic non-Fermi liquid which undergoes first-order thermal transition into a nematic insulator or continuous thermal transition into a nematic metal phase, separated by a tunable tricritical point. These phases arise from spontaneous partial orbital polarization of the multiorbital non-Fermi liquid. We explore the spectral and transport properties of this model, including d.c. elastoresistivity, which exhibits a peak near nematic transition, as well as nonzero frequency elastoconductivity. Our work offers a useful perspective on nematic phases and transport in correlated multiorbital systems. |
---|