Cargando…

Nematic phases and elastoresistivity from a multiorbital non-Fermi liquid

We propose and study a two-orbital lattice extension of the Sachdev-Ye-Kitaev model in the large-N limit. The phase diagram of this model features a high-temperature isotropic non-Fermi liquid which undergoes first-order thermal transition into a nematic insulator or continuous thermal transition in...

Descripción completa

Detalles Bibliográficos
Autores principales: Hardy, Andrew, Haldar, Arijit, Paramekanti, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926168/
https://www.ncbi.nlm.nih.gov/pubmed/36603030
http://dx.doi.org/10.1073/pnas.2207903120
Descripción
Sumario:We propose and study a two-orbital lattice extension of the Sachdev-Ye-Kitaev model in the large-N limit. The phase diagram of this model features a high-temperature isotropic non-Fermi liquid which undergoes first-order thermal transition into a nematic insulator or continuous thermal transition into a nematic metal phase, separated by a tunable tricritical point. These phases arise from spontaneous partial orbital polarization of the multiorbital non-Fermi liquid. We explore the spectral and transport properties of this model, including d.c. elastoresistivity, which exhibits a peak near nematic transition, as well as nonzero frequency elastoconductivity. Our work offers a useful perspective on nematic phases and transport in correlated multiorbital systems.