Cargando…
Experimental data of heat transfer nanofluids for trigeneration systems: viscosity at below-ambient temperatures
The present work exhibits the dynamic viscosity profile data of three distinct nanofluids, at a constant shear stress, and within a range of temperatures that include below-ambient conditions (from −10 to 20 °C). The nanofluids were as follows. Nanofluid I: 30% ethylene glycol and 70% distilled wate...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926181/ https://www.ncbi.nlm.nih.gov/pubmed/36798599 http://dx.doi.org/10.1016/j.dib.2022.108854 |
Sumario: | The present work exhibits the dynamic viscosity profile data of three distinct nanofluids, at a constant shear stress, and within a range of temperatures that include below-ambient conditions (from −10 to 20 °C). The nanofluids were as follows. Nanofluid I: 30% ethylene glycol and 70% distilled water (v/v), with graphene (0.32% in mass); Nanofluid II: 30% engine coolant NBR 13705; ASTM D-3306; ASTM D-4985) and 70% distilled water (v/v), with graphene (0.2% in mass); and Nanofluid III: 30% engine coolant and 70% distilled water (v/v), with Multi-Walled Carbon Nanotubes (MWCNT) (0.2% in mass). The present work was motivated by the scarcity of experimental data on the temperature dependence of viscosity for graphene, MWCNT, and their hybrid nanofluids, at below-ambient temperatures. |
---|