Cargando…
Reorganization and Plasticity of the Language Network in Patients with Cerebral Gliomas
Language is organized in large-scale networks in the human brain that show a strong potential for flexible interactions and adaptation. Neuroplasticity is the central mechanism that allows such dynamic modulation to changing conditions across the life span and is particularly important for network r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926312/ https://www.ncbi.nlm.nih.gov/pubmed/36736198 http://dx.doi.org/10.1016/j.nicl.2023.103326 |
Sumario: | Language is organized in large-scale networks in the human brain that show a strong potential for flexible interactions and adaptation. Neuroplasticity is the central mechanism that allows such dynamic modulation to changing conditions across the life span and is particularly important for network reorganization after brain lesions. Most studies on language reorganization focused on language recovery after stroke. Yet, a strong degree of adaptive neuroplasticity can also be observed in patients with brain tumors in language-eloquent brain areas. This review discusses key mechanisms for neural reorganization in patients with brain tumors. Our main aim is to elucidate the underlying mechanisms for intra- and interhemispheric plasticity in the language network in these patients. The following reorganization patterns are discussed: 1) Persisting function within the tumor; 2) Reorganization in perilesional regions; 3) Reorganization in a distributed network of the affected hemisphere; 4) Reorganization to the contralesional hemisphere. In this context, we shed light on language-related reorganization patterns in frontal and temporo-parietal areas and discuss their functional relevance. We also address tumor-related changes in structural and functional connectivity between eloquent brain regions. Thereby, we aim to expand the general understanding of the plastic potential of the neural language network and facilitate clinical decision-making processes for effective, function-preserving tumor treatment. |
---|