Cargando…
Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies
Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926440/ https://www.ncbi.nlm.nih.gov/pubmed/36788246 http://dx.doi.org/10.1038/s41467-023-36561-6 |
_version_ | 1784888281453821952 |
---|---|
author | Planas, Delphine Bruel, Timothée Staropoli, Isabelle Guivel-Benhassine, Florence Porrot, Françoise Maes, Piet Grzelak, Ludivine Prot, Matthieu Mougari, Said Planchais, Cyril Puech, Julien Saliba, Madelina Sahraoui, Riwan Fémy, Florent Morel, Nathalie Dufloo, Jérémy Sanjuán, Rafael Mouquet, Hugo André, Emmanuel Hocqueloux, Laurent Simon-Loriere, Etienne Veyer, David Prazuck, Thierry Péré, Hélène Schwartz, Olivier |
author_facet | Planas, Delphine Bruel, Timothée Staropoli, Isabelle Guivel-Benhassine, Florence Porrot, Françoise Maes, Piet Grzelak, Ludivine Prot, Matthieu Mougari, Said Planchais, Cyril Puech, Julien Saliba, Madelina Sahraoui, Riwan Fémy, Florent Morel, Nathalie Dufloo, Jérémy Sanjuán, Rafael Mouquet, Hugo André, Emmanuel Hocqueloux, Laurent Simon-Loriere, Etienne Veyer, David Prazuck, Thierry Péré, Hélène Schwartz, Olivier |
author_sort | Planas, Delphine |
collection | PubMed |
description | Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs. |
format | Online Article Text |
id | pubmed-9926440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99264402023-02-14 Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies Planas, Delphine Bruel, Timothée Staropoli, Isabelle Guivel-Benhassine, Florence Porrot, Françoise Maes, Piet Grzelak, Ludivine Prot, Matthieu Mougari, Said Planchais, Cyril Puech, Julien Saliba, Madelina Sahraoui, Riwan Fémy, Florent Morel, Nathalie Dufloo, Jérémy Sanjuán, Rafael Mouquet, Hugo André, Emmanuel Hocqueloux, Laurent Simon-Loriere, Etienne Veyer, David Prazuck, Thierry Péré, Hélène Schwartz, Olivier Nat Commun Article Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs. Nature Publishing Group UK 2023-02-14 /pmc/articles/PMC9926440/ /pubmed/36788246 http://dx.doi.org/10.1038/s41467-023-36561-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Planas, Delphine Bruel, Timothée Staropoli, Isabelle Guivel-Benhassine, Florence Porrot, Françoise Maes, Piet Grzelak, Ludivine Prot, Matthieu Mougari, Said Planchais, Cyril Puech, Julien Saliba, Madelina Sahraoui, Riwan Fémy, Florent Morel, Nathalie Dufloo, Jérémy Sanjuán, Rafael Mouquet, Hugo André, Emmanuel Hocqueloux, Laurent Simon-Loriere, Etienne Veyer, David Prazuck, Thierry Péré, Hélène Schwartz, Olivier Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies |
title | Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies |
title_full | Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies |
title_fullStr | Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies |
title_full_unstemmed | Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies |
title_short | Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies |
title_sort | resistance of omicron subvariants ba.2.75.2, ba.4.6, and bq.1.1 to neutralizing antibodies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926440/ https://www.ncbi.nlm.nih.gov/pubmed/36788246 http://dx.doi.org/10.1038/s41467-023-36561-6 |
work_keys_str_mv | AT planasdelphine resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT brueltimothee resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT staropoliisabelle resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT guivelbenhassineflorence resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT porrotfrancoise resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT maespiet resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT grzelakludivine resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT protmatthieu resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT mougarisaid resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT planchaiscyril resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT puechjulien resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT salibamadelina resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT sahraouiriwan resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT femyflorent resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT morelnathalie resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT dufloojeremy resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT sanjuanrafael resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT mouquethugo resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT andreemmanuel resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT hocquelouxlaurent resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT simonloriereetienne resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT veyerdavid resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT prazuckthierry resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT perehelene resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies AT schwartzolivier resistanceofomicronsubvariantsba2752ba46andbq11toneutralizingantibodies |