Cargando…
Crosslinking of Branched PIM-1 and PIM-Py Membranes for Recovery of Toluene from Dimethyl Sulfoxide by Pervaporation
[Image: see text] Branched forms of the archetypal polymer of intrinsic microporosity PIM-1 and the pyridinecarbonitrile-containing PIM-Py may be crosslinked under ambient conditions by palladium(II) acetate. Branched PIM-1 can arise in polymerizations of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926464/ https://www.ncbi.nlm.nih.gov/pubmed/36817336 http://dx.doi.org/10.1021/acsapm.2c01600 |
Sumario: | [Image: see text] Branched forms of the archetypal polymer of intrinsic microporosity PIM-1 and the pyridinecarbonitrile-containing PIM-Py may be crosslinked under ambient conditions by palladium(II) acetate. Branched PIM-1 can arise in polymerizations of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane with tetrafluoroterephthalonitrile conducted at a high set temperature (160 °C) under conditions, such as high dilution, that lead to a lower-temperature profile over the course of the reaction. Membranes of PIM-1 and PIM-Py crosslinked with palladium acetate are sufficiently stable in organic solvents for use in the recovery of toluene from its mixture with dimethyl sulfoxide (DMSO) by pervaporation at 65 °C. With both PIM-1 and PIM-Py membranes, pervaporation gives high toluene/DMSO separation factors (around 10 with a 77 vol % toluene feed). Detailed analysis shows that the membranes themselves are slightly selective for DMSO and it is the high driving force for toluene evaporation that drives the separation. |
---|