Cargando…
Evaluation of a decided sample size in machine learning applications
BACKGROUND: An appropriate sample size is essential for obtaining a precise and reliable outcome of a study. In machine learning (ML), studies with inadequate samples suffer from overfitting of data and have a lower probability of producing true effects, while the increment in sample size increases...
Autores principales: | Rajput, Daniyal, Wang, Wei-Jen, Chen, Chun-Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926644/ https://www.ncbi.nlm.nih.gov/pubmed/36788550 http://dx.doi.org/10.1186/s12859-023-05156-9 |
Ejemplares similares
-
Machine learning algorithm validation with a limited sample size
por: Vabalas, Andrius, et al.
Publicado: (2019) -
MCPH1, beyond its role deciding the brain size
por: Kristofova, Martina, et al.
Publicado: (2021) -
Observing the Observer (II): Deciding When to Decide
por: Daunizeau, Jean, et al.
Publicado: (2010) -
Sample Size Analysis for Machine Learning Clinical Validation Studies
por: Goldenholz, Daniel M., et al.
Publicado: (2023) -
Machine learning on small size samples: A synthetic knowledge synthesis
por: Kokol, Peter, et al.
Publicado: (2022)