Cargando…

Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong

Detalles Bibliográficos
Autores principales: Guan, Jingjing, Leung, Eman, Kwok, Kin-on, Chen, Frank Youhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926774/
https://www.ncbi.nlm.nih.gov/pubmed/36782144
http://dx.doi.org/10.1186/s12874-023-01851-6
_version_ 1784888348452585472
author Guan, Jingjing
Leung, Eman
Kwok, Kin-on
Chen, Frank Youhua
author_facet Guan, Jingjing
Leung, Eman
Kwok, Kin-on
Chen, Frank Youhua
author_sort Guan, Jingjing
collection PubMed
description
format Online
Article
Text
id pubmed-9926774
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-99267742023-02-15 Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong Guan, Jingjing Leung, Eman Kwok, Kin-on Chen, Frank Youhua BMC Med Res Methodol Correction BioMed Central 2023-02-13 /pmc/articles/PMC9926774/ /pubmed/36782144 http://dx.doi.org/10.1186/s12874-023-01851-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Correction
Guan, Jingjing
Leung, Eman
Kwok, Kin-on
Chen, Frank Youhua
Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
title Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
title_full Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
title_fullStr Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
title_full_unstemmed Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
title_short Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
title_sort correction: a hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in hong kong
topic Correction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926774/
https://www.ncbi.nlm.nih.gov/pubmed/36782144
http://dx.doi.org/10.1186/s12874-023-01851-6
work_keys_str_mv AT guanjingjing correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong
AT leungeman correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong
AT kwokkinon correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong
AT chenfrankyouhua correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong