Cargando…
Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926774/ https://www.ncbi.nlm.nih.gov/pubmed/36782144 http://dx.doi.org/10.1186/s12874-023-01851-6 |
_version_ | 1784888348452585472 |
---|---|
author | Guan, Jingjing Leung, Eman Kwok, Kin-on Chen, Frank Youhua |
author_facet | Guan, Jingjing Leung, Eman Kwok, Kin-on Chen, Frank Youhua |
author_sort | Guan, Jingjing |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-9926774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-99267742023-02-15 Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong Guan, Jingjing Leung, Eman Kwok, Kin-on Chen, Frank Youhua BMC Med Res Methodol Correction BioMed Central 2023-02-13 /pmc/articles/PMC9926774/ /pubmed/36782144 http://dx.doi.org/10.1186/s12874-023-01851-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Correction Guan, Jingjing Leung, Eman Kwok, Kin-on Chen, Frank Youhua Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong |
title | Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong |
title_full | Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong |
title_fullStr | Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong |
title_full_unstemmed | Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong |
title_short | Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong |
title_sort | correction: a hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in hong kong |
topic | Correction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926774/ https://www.ncbi.nlm.nih.gov/pubmed/36782144 http://dx.doi.org/10.1186/s12874-023-01851-6 |
work_keys_str_mv | AT guanjingjing correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong AT leungeman correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong AT kwokkinon correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong AT chenfrankyouhua correctionahybridmachinelearningframeworktoimprovepredictionofallcauserehospitalizationamongeldelypatientsinhongkong |