Cargando…
Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
Autores principales: | Guan, Jingjing, Leung, Eman, Kwok, Kin-on, Chen, Frank Youhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926774/ https://www.ncbi.nlm.nih.gov/pubmed/36782144 http://dx.doi.org/10.1186/s12874-023-01851-6 |
Ejemplares similares
-
A hybrid machine learning framework to improve prediction of all-cause rehospitalization among elderly patients in Hong Kong
por: Guan, Jingjing, et al.
Publicado: (2023) -
Use of antibiotics by primary care doctors in Hong Kong
por: Lam, Tai Pong, et al.
Publicado: (2009) -
Correction: Hong Kong Hospital Authority resource efficiency evaluation: Via a novel DEA-Malmquist model and Tobit regression model
por: Guo, Hainan, et al.
Publicado: (2018) -
Correction to: Modelling the impact of travel restrictions on COVID-19 cases in Hong Kong in early 2020
por: Kwok, Wang-Chun, et al.
Publicado: (2021) -
Emamectin Benzoate Treatment of Hybrid Grouper Infected With Sea Lice in Hong Kong
por: St-Hilaire, Sophie, et al.
Publicado: (2021)