Cargando…
Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for In Vitro Cell Culture Systems
[Image: see text] The mechanical microenvironment plays a crucial role in the evolution of colorectal cancer, a complex disease characterized by heterogeneous tumors with varying elasticity. Toward setting up distinct scenarios, herein, we describe the preparation and characterization of gelatin met...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926877/ https://www.ncbi.nlm.nih.gov/pubmed/36817339 http://dx.doi.org/10.1021/acsapm.2c01980 |
_version_ | 1784888367143452672 |
---|---|
author | Pamplona, Regina González-Lana, Sandra Romero, Pilar Ochoa, Ignacio Martín-Rapún, Rafael Sánchez-Somolinos, Carlos |
author_facet | Pamplona, Regina González-Lana, Sandra Romero, Pilar Ochoa, Ignacio Martín-Rapún, Rafael Sánchez-Somolinos, Carlos |
author_sort | Pamplona, Regina |
collection | PubMed |
description | [Image: see text] The mechanical microenvironment plays a crucial role in the evolution of colorectal cancer, a complex disease characterized by heterogeneous tumors with varying elasticity. Toward setting up distinct scenarios, herein, we describe the preparation and characterization of gelatin methacrylamide (GelMA)-based hydrogels via two different mechanisms: free-radical photopolymerization and photo-induced thiol-ene reaction. A precise stiffness modulation of covalently crosslinked scaffolds was achieved through the application of well-defined irradiation times while keeping the intensity constant. Besides, the incorporation of thiol chemistry strongly increased stiffness with low to moderate curing times. This wide range of finely tuned mechanical properties successfully covered from healthy tissue to colorectal cancer stages. Hydrogels prepared in phosphate-buffered saline or Dulbecco’s modified Eagle’s medium resulted in different mechanical and swelling properties, although a similar trend was observed for both conditions: thiol-ene systems exhibited higher stiffness and, at the same time, higher swelling capacity than free-radical photopolymerized networks. In terms of biological behavior, three of the substrates showed good cell proliferation rates according to the formation of a confluent monolayer of Caco-2 cells after 14 days of cell culture. Likewise, a characteristic apical-basal polarization of cells was observed for these three hydrogels. These results demonstrate the versatility of the presented platform of biomimetic materials as in vitro cell culture scaffolds. |
format | Online Article Text |
id | pubmed-9926877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99268772023-02-15 Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for In Vitro Cell Culture Systems Pamplona, Regina González-Lana, Sandra Romero, Pilar Ochoa, Ignacio Martín-Rapún, Rafael Sánchez-Somolinos, Carlos ACS Appl Polym Mater [Image: see text] The mechanical microenvironment plays a crucial role in the evolution of colorectal cancer, a complex disease characterized by heterogeneous tumors with varying elasticity. Toward setting up distinct scenarios, herein, we describe the preparation and characterization of gelatin methacrylamide (GelMA)-based hydrogels via two different mechanisms: free-radical photopolymerization and photo-induced thiol-ene reaction. A precise stiffness modulation of covalently crosslinked scaffolds was achieved through the application of well-defined irradiation times while keeping the intensity constant. Besides, the incorporation of thiol chemistry strongly increased stiffness with low to moderate curing times. This wide range of finely tuned mechanical properties successfully covered from healthy tissue to colorectal cancer stages. Hydrogels prepared in phosphate-buffered saline or Dulbecco’s modified Eagle’s medium resulted in different mechanical and swelling properties, although a similar trend was observed for both conditions: thiol-ene systems exhibited higher stiffness and, at the same time, higher swelling capacity than free-radical photopolymerized networks. In terms of biological behavior, three of the substrates showed good cell proliferation rates according to the formation of a confluent monolayer of Caco-2 cells after 14 days of cell culture. Likewise, a characteristic apical-basal polarization of cells was observed for these three hydrogels. These results demonstrate the versatility of the presented platform of biomimetic materials as in vitro cell culture scaffolds. American Chemical Society 2023-01-27 /pmc/articles/PMC9926877/ /pubmed/36817339 http://dx.doi.org/10.1021/acsapm.2c01980 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Pamplona, Regina González-Lana, Sandra Romero, Pilar Ochoa, Ignacio Martín-Rapún, Rafael Sánchez-Somolinos, Carlos Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for In Vitro Cell Culture Systems |
title | Tuning of Mechanical
Properties in Photopolymerizable
Gelatin-Based Hydrogels for In Vitro Cell Culture
Systems |
title_full | Tuning of Mechanical
Properties in Photopolymerizable
Gelatin-Based Hydrogels for In Vitro Cell Culture
Systems |
title_fullStr | Tuning of Mechanical
Properties in Photopolymerizable
Gelatin-Based Hydrogels for In Vitro Cell Culture
Systems |
title_full_unstemmed | Tuning of Mechanical
Properties in Photopolymerizable
Gelatin-Based Hydrogels for In Vitro Cell Culture
Systems |
title_short | Tuning of Mechanical
Properties in Photopolymerizable
Gelatin-Based Hydrogels for In Vitro Cell Culture
Systems |
title_sort | tuning of mechanical
properties in photopolymerizable
gelatin-based hydrogels for in vitro cell culture
systems |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926877/ https://www.ncbi.nlm.nih.gov/pubmed/36817339 http://dx.doi.org/10.1021/acsapm.2c01980 |
work_keys_str_mv | AT pamplonaregina tuningofmechanicalpropertiesinphotopolymerizablegelatinbasedhydrogelsforinvitrocellculturesystems AT gonzalezlanasandra tuningofmechanicalpropertiesinphotopolymerizablegelatinbasedhydrogelsforinvitrocellculturesystems AT romeropilar tuningofmechanicalpropertiesinphotopolymerizablegelatinbasedhydrogelsforinvitrocellculturesystems AT ochoaignacio tuningofmechanicalpropertiesinphotopolymerizablegelatinbasedhydrogelsforinvitrocellculturesystems AT martinrapunrafael tuningofmechanicalpropertiesinphotopolymerizablegelatinbasedhydrogelsforinvitrocellculturesystems AT sanchezsomolinoscarlos tuningofmechanicalpropertiesinphotopolymerizablegelatinbasedhydrogelsforinvitrocellculturesystems |