Cargando…

Forecasting hospital-level COVID-19 admissions using real-time mobility data

BACKGROUND: For each of the COVID-19 pandemic waves, hospitals have had to plan for deploying surge capacity and resources to manage large but transient increases in COVID-19 admissions. While a lot of effort has gone into predicting regional trends in COVID-19 cases and hospitalizations, there are...

Descripción completa

Detalles Bibliográficos
Autores principales: Klein, Brennan, Zenteno, Ana C., Joseph, Daisha, Zahedi, Mohammadmehdi, Hu, Michael, Copenhaver, Martin S., Kraemer, Moritz U. G., Chinazzi, Matteo, Klompas, Michael, Vespignani, Alessandro, Scarpino, Samuel V., Salmasian, Hojjat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927044/
https://www.ncbi.nlm.nih.gov/pubmed/36788347
http://dx.doi.org/10.1038/s43856-023-00253-5
Descripción
Sumario:BACKGROUND: For each of the COVID-19 pandemic waves, hospitals have had to plan for deploying surge capacity and resources to manage large but transient increases in COVID-19 admissions. While a lot of effort has gone into predicting regional trends in COVID-19 cases and hospitalizations, there are far fewer successful tools for creating accurate hospital-level forecasts. METHODS: Large-scale, anonymized mobile phone data has been shown to correlate with regional case counts during the first two waves of the pandemic (spring 2020, and fall/winter 2021). Building off this success, we developed a multi-step, recursive forecasting model to predict individual hospital admissions; this model incorporates the following data: (i) hospital-level COVID-19 admissions, (ii) statewide test positivity data, and (iii) aggregate measures of large-scale human mobility, contact patterns, and commuting volume. RESULTS: Incorporating large-scale, aggregate mobility data as exogenous variables in prediction models allows us to make hospital-specific COVID-19 admission forecasts 21 days ahead. We show this through highly accurate predictions of hospital admissions for five hospitals in Massachusetts during the first year of the COVID-19 pandemic. CONCLUSIONS: The high predictive capability of the model was achieved by combining anonymized, aggregated mobile device data about users’ contact patterns, commuting volume, and mobility range with COVID hospitalizations and test-positivity data. Mobility-informed forecasting models can increase the lead-time of accurate predictions for individual hospitals, giving managers valuable time to strategize how best to allocate resources to manage forthcoming surges.