Cargando…

Sensing echoes: temporal misalignment in auditory brainstem responses as the earliest marker of neurodevelopmental derailment

Neurodevelopmental disorders are on the rise worldwide, with diagnoses that detect derailment from typical milestones by 3 to 4.5 years of age. By then, the circuitry in the brain has already reached some level of maturation that inevitably takes neurodevelopment through a different course. There is...

Descripción completa

Detalles Bibliográficos
Autores principales: Torres, Elizabeth B, Varkey, Hannah, Vero, Joe, London, Eric, Phan, Ha, Kittler, Phyllis, Gordon, Anne, Delgado, Rafael E, Delgado, Christine F, Simpson, Elizabeth A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927073/
https://www.ncbi.nlm.nih.gov/pubmed/36798622
http://dx.doi.org/10.1093/pnasnexus/pgac315
Descripción
Sumario:Neurodevelopmental disorders are on the rise worldwide, with diagnoses that detect derailment from typical milestones by 3 to 4.5 years of age. By then, the circuitry in the brain has already reached some level of maturation that inevitably takes neurodevelopment through a different course. There is a critical need then to develop analytical methods that detect problems much earlier and identify targets for treatment. We integrate data from multiple sources, including neonatal auditory brainstem responses (ABR), clinical criteria detecting autism years later in those neonates, and similar ABR information for young infants and children who also received a diagnosis of autism spectrum disorders, to produce the earliest known digital screening biomarker to flag neurodevelopmental derailment in neonates. This work also defines concrete targets for treatment and offers a new statistical approach to aid in guiding a personalized course of maturation in line with the highly nonlinear, accelerated neurodevelopmental rates of change in early infancy.