Cargando…
Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes
With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927147/ https://www.ncbi.nlm.nih.gov/pubmed/36651776 http://dx.doi.org/10.1128/spectrum.03667-22 |
_version_ | 1784888420919672832 |
---|---|
author | Zhang, Yuewen Kepiro, Ibolya Ryadnov, Maxim G. Pagliara, Stefano |
author_facet | Zhang, Yuewen Kepiro, Ibolya Ryadnov, Maxim G. Pagliara, Stefano |
author_sort | Zhang, Yuewen |
collection | PubMed |
description | With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing. |
format | Online Article Text |
id | pubmed-9927147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-99271472023-02-15 Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes Zhang, Yuewen Kepiro, Ibolya Ryadnov, Maxim G. Pagliara, Stefano Microbiol Spectr Research Article With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing. American Society for Microbiology 2023-01-18 /pmc/articles/PMC9927147/ /pubmed/36651776 http://dx.doi.org/10.1128/spectrum.03667-22 Text en Copyright © 2023 Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Zhang, Yuewen Kepiro, Ibolya Ryadnov, Maxim G. Pagliara, Stefano Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes |
title | Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes |
title_full | Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes |
title_fullStr | Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes |
title_full_unstemmed | Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes |
title_short | Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes |
title_sort | single cell killing kinetics differentiate phenotypic bacterial responses to different antibacterial classes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927147/ https://www.ncbi.nlm.nih.gov/pubmed/36651776 http://dx.doi.org/10.1128/spectrum.03667-22 |
work_keys_str_mv | AT zhangyuewen singlecellkillingkineticsdifferentiatephenotypicbacterialresponsestodifferentantibacterialclasses AT kepiroibolya singlecellkillingkineticsdifferentiatephenotypicbacterialresponsestodifferentantibacterialclasses AT ryadnovmaximg singlecellkillingkineticsdifferentiatephenotypicbacterialresponsestodifferentantibacterialclasses AT pagliarastefano singlecellkillingkineticsdifferentiatephenotypicbacterialresponsestodifferentantibacterialclasses |